The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effect...The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effectively with the addition of Hf,Hf can react with Al to form Al3Hf particles during the solidification, the primary Al3Hf particles are highly potent nucleants for Al and the nanoscale coherent Al3Hf particles can inhibit the grain growth by pinning effect. The grain refinement mechanism of studied alloys was verified by the solute theory and the crystallography study, and it can be divided into two distinct types: At low Hf contents, there are no primary Al3Hf phases to form, the acquired grain refinement is primarily attributed to the constitutional undercooling induced by the Hf solute. At medium and high Hf contents, both Hf solute and Al3Hf particles contribute to the refinement.展开更多
In-situ titanium matrix composites with N content of 0. 045-0. 27 wt% have been produced by a easting method. The microstructure and mechanical properties of as-cast materials have been observed and tested. The result...In-situ titanium matrix composites with N content of 0. 045-0. 27 wt% have been produced by a easting method. The microstructure and mechanical properties of as-cast materials have been observed and tested. The results show that when N content in Ti-6Al alloy is between 0. 045 wt% and 0. 27 wt%, the reinforcement is a compound of Ti, Al and N, and volume fraction of reinforcements increases with an increase of N content. The hardness, compressive strength and elastic modulus are all higher than that of the matrix alloy. With the increase of N content, the compressive strength, the hardness and the elastic modulus increase. Fracture surface analysis has also shown that the matrix alloy fractures in a ductile model and the composites fracture in a cleavage brittle model with characteristics of dimple and cleavage surface.展开更多
基金Project(SGRI-WD-71-13-001) supported by the Scientific and Technological Project of State Grid Corporation of China
文摘The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effectively with the addition of Hf,Hf can react with Al to form Al3Hf particles during the solidification, the primary Al3Hf particles are highly potent nucleants for Al and the nanoscale coherent Al3Hf particles can inhibit the grain growth by pinning effect. The grain refinement mechanism of studied alloys was verified by the solute theory and the crystallography study, and it can be divided into two distinct types: At low Hf contents, there are no primary Al3Hf phases to form, the acquired grain refinement is primarily attributed to the constitutional undercooling induced by the Hf solute. At medium and high Hf contents, both Hf solute and Al3Hf particles contribute to the refinement.
文摘In-situ titanium matrix composites with N content of 0. 045-0. 27 wt% have been produced by a easting method. The microstructure and mechanical properties of as-cast materials have been observed and tested. The results show that when N content in Ti-6Al alloy is between 0. 045 wt% and 0. 27 wt%, the reinforcement is a compound of Ti, Al and N, and volume fraction of reinforcements increases with an increase of N content. The hardness, compressive strength and elastic modulus are all higher than that of the matrix alloy. With the increase of N content, the compressive strength, the hardness and the elastic modulus increase. Fracture surface analysis has also shown that the matrix alloy fractures in a ductile model and the composites fracture in a cleavage brittle model with characteristics of dimple and cleavage surface.