Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power c...Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power control(PC) in D2D-aided content delivery scenario for both user fairness(UF)and system throughput(ST) under QoS requirement.Due to the complexity of the problem,we decompose it into two components:CA is formulated from graph perspective to mitigate severe co-channel interference,which turns out to be the Max K-cut problem;LA and PC are jointly optimized to utilize the gain achieved from CA for supreme performance,and specifically,genetic algorithm(GA) is adopted to optimize LA,but when deriving the fitness of each chromosome,PC optimization will be involved.Thanks to numerical results,we elucidate the efficacy of our scheme.展开更多
Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing pr...Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing protocol which adopts cross-layer mechanism and energy-aware metric to improve AODV routing protocol to reduce the energy consumption and then prolong the life of the whole network.In CEAODV,the link layer and the routing layer work together to choose the optimized transmission power for nodes and the route for packets.The link layer provides the energy consumption information for the routing layer and the routing layer chooses route accordingly and conversely controls the link layer to adjust the transmission power.The simulation result shows that CEAODV can outperform AODV to save more energy.It can reduce the consumed energy by about 8%over traditional energy-aware algorithm.And the performance is better when the traffic load is higher in the network.展开更多
Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mod...Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mode relaying techniques,the full-duplex based two-way relaying(FD-TWR) enables data exchanges between two nodes to be completed within a single time-slot,thus resulting in a significant improvement in the spectrum efficiency. In this paper,the channel model of the FD-TWR is first given out,followed by deriving the critical performance metrics,including the received signal-to-interference-plus-noise ratio(SINR),the upper bound of the ergodic capacity and the closedform solution of the proposed FD-TWR under amplify-and-forward(AF) mode. Furthermore,taking the limit of sum-transmit-power into account,we formulate the objective function of the optimal power allocation of FD-TWR as an extreme-value problem by deriving the optimal transmit power for both the source nodes and the relay node. As long as the self-interference(SI) signal in the FD-TWR nodes can be sufficiently suppressed,the proposed scheme is shown to outperform the conventional HD mode in terms of both the ergodic capacity and the outage probability. In addition,regardless of the practical SI power,the proposedFD-TWR is always capable of achieving its best performance with an aid of the proposed optimal power allocation scheme.展开更多
基金supported by the National 863 projects of China(2014AA01A706)
文摘Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power control(PC) in D2D-aided content delivery scenario for both user fairness(UF)and system throughput(ST) under QoS requirement.Due to the complexity of the problem,we decompose it into two components:CA is formulated from graph perspective to mitigate severe co-channel interference,which turns out to be the Max K-cut problem;LA and PC are jointly optimized to utilize the gain achieved from CA for supreme performance,and specifically,genetic algorithm(GA) is adopted to optimize LA,but when deriving the fitness of each chromosome,PC optimization will be involved.Thanks to numerical results,we elucidate the efficacy of our scheme.
基金Supported by National Natural Science Foundation of China(No.90604013)Natural Science Foundation of Tianjin(No.08JCYBJC14200)National High Technology Research and Development Program("863"Program)of China(No.2007AA01Z220)
文摘Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing protocol which adopts cross-layer mechanism and energy-aware metric to improve AODV routing protocol to reduce the energy consumption and then prolong the life of the whole network.In CEAODV,the link layer and the routing layer work together to choose the optimized transmission power for nodes and the route for packets.The link layer provides the energy consumption information for the routing layer and the routing layer chooses route accordingly and conversely controls the link layer to adjust the transmission power.The simulation result shows that CEAODV can outperform AODV to save more energy.It can reduce the consumed energy by about 8%over traditional energy-aware algorithm.And the performance is better when the traffic load is higher in the network.
基金supported by the key project of the National Natural Science Foundation of China (No.61431001)5G research program of China Mobile Research Institute (Grant No.[2015] 0615)+1 种基金Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘Cooperative communication is regarded as a promising technique for improving the reliability of wireless communication links and enhancing the radio coverage simultaneously. Unlike the conventional half-duplex(HD) mode relaying techniques,the full-duplex based two-way relaying(FD-TWR) enables data exchanges between two nodes to be completed within a single time-slot,thus resulting in a significant improvement in the spectrum efficiency. In this paper,the channel model of the FD-TWR is first given out,followed by deriving the critical performance metrics,including the received signal-to-interference-plus-noise ratio(SINR),the upper bound of the ergodic capacity and the closedform solution of the proposed FD-TWR under amplify-and-forward(AF) mode. Furthermore,taking the limit of sum-transmit-power into account,we formulate the objective function of the optimal power allocation of FD-TWR as an extreme-value problem by deriving the optimal transmit power for both the source nodes and the relay node. As long as the self-interference(SI) signal in the FD-TWR nodes can be sufficiently suppressed,the proposed scheme is shown to outperform the conventional HD mode in terms of both the ergodic capacity and the outage probability. In addition,regardless of the practical SI power,the proposedFD-TWR is always capable of achieving its best performance with an aid of the proposed optimal power allocation scheme.