A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short...A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.展开更多
Integration amongst various decision-making processes, such as planning, design, and operation is necessary to dynamic and flexible batch production. To achieve a batch production integration, utilization of common mo...Integration amongst various decision-making processes, such as planning, design, and operation is necessary to dynamic and flexible batch production. To achieve a batch production integration, utilization of common models used for various decision-making processes is an effective approach. From this point of view, a batch system common model as described by a Petri net is proposed. In this article, a fault diagnosis technique for batch processes is presented using information about fault propagation and the possibilities of integration of fault analysis and controller synthesis are discussed on the basis of the Petri net based common models.展开更多
A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The ...A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The self-locking and virtual work principles were applied to studying the basic self-locking condition of the USM.In order to make the cooperation between the crutch and telescopic mechanism more harmonical,the unlocking time of the USM was calculated.A set of parameters were selected to build a virtual model and fabricate a prototype.Both the simulation and performance experiments were carried out in a pipe with a nominal inside diameter of 160 mm.The results show that USM enables the robot to move quickly in one way,and in the other way it helps the robot get self-locking with the pipe wall.The traction of the inchworm robot can rise to 1.2 kN,beyond the limitation of friction of 0.497 kN.展开更多
A monolithic clock-recovery circuit used in 622 Mb/s optical communication system is designed,which is based on the phase-locked loop theory,and uses bipolar transistor model.It overcomes the shortcoming of clock reco...A monolithic clock-recovery circuit used in 622 Mb/s optical communication system is designed,which is based on the phase-locked loop theory,and uses bipolar transistor model.It overcomes the shortcoming of clock recovery method based on filter,and implements monolithic clock-recovery IC.The designed circuits include phase detector,voltage-controlled oscillator and loop filter.Among them,the voltage-control oscillator is a modified two-stage ring oscillator,which provides quadrature clock signals and presents wide voltage-controlled range and high voltage-controlling sensitivity.展开更多
In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magne...In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magnetometer studied can reduce the frequency noise of system and improve the magnetic sensitivity by microwave frequency modulation.Firstly,ESR spectra by sweeping the microwave frequency was obtained.Further,the microwave frequency modulated was gained through the mixed high-frequency sinusoidal modulation signal generated by signal generator.In addition,the frequency through the lock-in amplifier was locked,and the signal which was proportional to the first derivative of the spectrum was obtained.The experimental results show that the sensitivity of magnetic field detection can reach 17.628 nT/Hz based on microwave frequency modulation technology.The method realizes high resolution and sensitivity for magnetic field detection.展开更多
This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-...This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-bandwidth vs. maximum-phase-noise is suggested to be a new criterion to the performance of SDM,which greatly helps designers to select an appropriate SDM structure to meet their real application requirements and to reduce the cost as low as possible. A low-spur 3-order Mul-tistage Noise Shaping (MASH)-1-1-1 SDM using three 2-bit first-order cascaded modulators is proposed,which balances the requirements of tone-free and maximum operation frequency.展开更多
A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage change...A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis, an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.SV supply voltage, occupies 0.046mm^2 of on-chip area. According to the measured results, the ADPLL can operate from 108MHz to 304MHz, and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.展开更多
The optimal intensity noise suppression of a Fabry-Perot (FP) laser is experimentally acquired by relatively strong external optical injection locking technology. The maximum suppression is up to 9dB around the rela...The optimal intensity noise suppression of a Fabry-Perot (FP) laser is experimentally acquired by relatively strong external optical injection locking technology. The maximum suppression is up to 9dB around the relaxation oscillation peak of the free running FP laser. We demonstrate how the injection light power and detuning frequency influence the intensity noise suppression effects. Additionally, the relationship between the optimal suppression range and the stable locking range is experimentally studied:both ranges enlarge as the injection light power increases, but the stable locking range permits larger detuning frequency at identical injection light power.展开更多
We demonstrate that the intrinsic properties of monolayer graphene allow it to act as a more effective saturable absorber for mode-locking fiber lasers when compared to multilayer graphene. The absorption of monolayer...We demonstrate that the intrinsic properties of monolayer graphene allow it to act as a more effective saturable absorber for mode-locking fiber lasers when compared to multilayer graphene. The absorption of monolayer graphene can be saturated at lower excitation intensity compared to multilayer graphene, graphene with wrinkle-like defects, or functionalized graphene. Monolayer graphene has a remarkably large modulation depth of 65.9%, whereas the modulation depth of multilayer graphene is greatly reduced due to nonsaturable absorption and scattering loss. Picosecond ultrafast laser pulses (1.23 ps) can be generated using monolayer graphene as a saturable absorber. Due to the ultrafast relaxation time, larger modulation depth and lower scattering loss of monolayer graphene, it performs better than multilayer graphene in terms of pulse shaping ability, pulse stability, and output energy.展开更多
文摘A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.
文摘Integration amongst various decision-making processes, such as planning, design, and operation is necessary to dynamic and flexible batch production. To achieve a batch production integration, utilization of common models used for various decision-making processes is an effective approach. From this point of view, a batch system common model as described by a Petri net is proposed. In this article, a fault diagnosis technique for batch processes is presented using information about fault propagation and the possibilities of integration of fault analysis and controller synthesis are discussed on the basis of the Petri net based common models.
基金Project(2007AA04Z256) supported by the National High-Tech Research and Development Program of China
文摘A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The self-locking and virtual work principles were applied to studying the basic self-locking condition of the USM.In order to make the cooperation between the crutch and telescopic mechanism more harmonical,the unlocking time of the USM was calculated.A set of parameters were selected to build a virtual model and fabricate a prototype.Both the simulation and performance experiments were carried out in a pipe with a nominal inside diameter of 160 mm.The results show that USM enables the robot to move quickly in one way,and in the other way it helps the robot get self-locking with the pipe wall.The traction of the inchworm robot can rise to 1.2 kN,beyond the limitation of friction of 0.497 kN.
文摘A monolithic clock-recovery circuit used in 622 Mb/s optical communication system is designed,which is based on the phase-locked loop theory,and uses bipolar transistor model.It overcomes the shortcoming of clock recovery method based on filter,and implements monolithic clock-recovery IC.The designed circuits include phase detector,voltage-controlled oscillator and loop filter.Among them,the voltage-control oscillator is a modified two-stage ring oscillator,which provides quadrature clock signals and presents wide voltage-controlled range and high voltage-controlling sensitivity.
基金National Natural Science Foundation of China(Nos.51635011,61503346,51727808)National Science Foundation of Shanxi Province(No.201701D121080)
文摘In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magnetometer studied can reduce the frequency noise of system and improve the magnetic sensitivity by microwave frequency modulation.Firstly,ESR spectra by sweeping the microwave frequency was obtained.Further,the microwave frequency modulated was gained through the mixed high-frequency sinusoidal modulation signal generated by signal generator.In addition,the frequency through the lock-in amplifier was locked,and the signal which was proportional to the first derivative of the spectrum was obtained.The experimental results show that the sensitivity of magnetic field detection can reach 17.628 nT/Hz based on microwave frequency modulation technology.The method realizes high resolution and sensitivity for magnetic field detection.
基金the National Natural Science Foundation of China (No. 60025101, No.90207001, and No. 90307016).
文摘This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-bandwidth vs. maximum-phase-noise is suggested to be a new criterion to the performance of SDM,which greatly helps designers to select an appropriate SDM structure to meet their real application requirements and to reduce the cost as low as possible. A low-spur 3-order Mul-tistage Noise Shaping (MASH)-1-1-1 SDM using three 2-bit first-order cascaded modulators is proposed,which balances the requirements of tone-free and maximum operation frequency.
文摘A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis, an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.SV supply voltage, occupies 0.046mm^2 of on-chip area. According to the measured results, the ADPLL can operate from 108MHz to 304MHz, and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.
基金the National Natural Science Foundation of China(Nos.60510173,60536010,60506006,60606019,60777029)the State Key Development Program for Basic Research of China(Nos.2006CB604902,2006CB302806,2006DFA11880)~~
文摘The optimal intensity noise suppression of a Fabry-Perot (FP) laser is experimentally acquired by relatively strong external optical injection locking technology. The maximum suppression is up to 9dB around the relaxation oscillation peak of the free running FP laser. We demonstrate how the injection light power and detuning frequency influence the intensity noise suppression effects. Additionally, the relationship between the optimal suppression range and the stable locking range is experimentally studied:both ranges enlarge as the injection light power increases, but the stable locking range permits larger detuning frequency at identical injection light power.
文摘We demonstrate that the intrinsic properties of monolayer graphene allow it to act as a more effective saturable absorber for mode-locking fiber lasers when compared to multilayer graphene. The absorption of monolayer graphene can be saturated at lower excitation intensity compared to multilayer graphene, graphene with wrinkle-like defects, or functionalized graphene. Monolayer graphene has a remarkably large modulation depth of 65.9%, whereas the modulation depth of multilayer graphene is greatly reduced due to nonsaturable absorption and scattering loss. Picosecond ultrafast laser pulses (1.23 ps) can be generated using monolayer graphene as a saturable absorber. Due to the ultrafast relaxation time, larger modulation depth and lower scattering loss of monolayer graphene, it performs better than multilayer graphene in terms of pulse shaping ability, pulse stability, and output energy.