The lepidolite located in Yichun, Jiangxi Province, China, was adopted to investigate the recovery of alkali metals and leaching kinetics of lithium with sulphuric acid solution under atmospheric pressure. The results...The lepidolite located in Yichun, Jiangxi Province, China, was adopted to investigate the recovery of alkali metals and leaching kinetics of lithium with sulphuric acid solution under atmospheric pressure. The results show that the recoveries of alkali metals were achieved under the leaching conditions: mass ratio of lepidolite with particle size less than 180 μm to sulphuric acid 1.2, leaching temperature 411 K, liquid-solid ratio 2.5∶1, and leaching time 10 h. Under the selected conditions for leaching experiment, the leaching rates of lithium, potassium, rubidium and caesium are 94.18%, 93.70%, 91.81% and 89.22%, respectively. The X-ray diffraction analysis for leaching residue indicates that no insoluble product forms during leaching. The chemical compositions of leaching residue reveal that trace iron, manganese and calcium disappear after acid leaching. The kinetics of leaching process for lithium follows shrinking core model of mixed control and the apparent activation energy is 17.21 kJ/mol. The reaction orders with respect to sulphuric acid concentration and liquid-solid ratio are determined to be 2.85 and 1.66, respectively. A semi-empirical rate equation was obtained to describe the leaching process. The kinetic analysis shows that the leaching process is controlled by diffusion through the insoluble layer of the associated minerals.展开更多
An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investiga...An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investigated in an ore/HF/H2SO4 ratio of 1:3:2 g:mL:mL with leaching temperature ranging from 50 to 100°C.The results indicate that the leaching kinetics of Li fitted well with a model based on the shrinking core model.In addition,the leaching rate of Li was controlled by chemical reactions and diffusion through the product layers.The apparent activation energy Ea was calculated to be 32.68 kJ/mol.Solid films were formed because of the generation of insoluble products such as cryolithionite(Na3Li2Al2F12),cryolite(Na3AlF6),calcium fluoride(CaF2),potassium cryolite(K2AlF5),aluminum fluoride(AlF3),and fluorosilicates(Na2SiF6 or KNaSiF6).Furthermore,the effects of the ore/HF ratio and leaching temperature on the leaching behavior of Li,Al and Si were investigated.The results indicate that the ore/HF ratio and leaching temperature could clearly affect the distribution of HF molecules on the leaching of Li,Al and Si,which are important for the selective leaching of Li over Al and Si with this fluorine-based chemical method.展开更多
The graphite was modified using pitch through dynamical melt-carbonization, and the effects of modification temperature and the amount of pitch on the characteristics of graphite were investigated. The structure and c...The graphite was modified using pitch through dynamical melt-carbonization, and the effects of modification temperature and the amount of pitch on the characteristics of graphite were investigated. The structure and characteristics of the graphite were determined by X-ray diffractometry(XRD), scanning electron microscopy(SEM), particle size analysis and electrochemical measurements. The results show that the modified graphite has a disordered carbon/graphite composite structure, larger average particle diameter, greater tap density, and better electrochemical characteristics than the untreated graphite. The sample coated with 10% pitch dynamical melt-carbonized at 400 ℃ for 3 h and heat-treated at 850 ℃ for 2 h has better electrochemical performances with a reversible capacity of 360.5 mA·h/g, a irreversible capacity of 41.0 mA·h/g, and an initial coulombic efficiency of 89.8% compared with natural graphite and disordered carbon. The cycling stability of the Li/C cell with modified graphite as anodes is improved, and its capacity retention ratio at the 30th cycle is up to 94.37%.展开更多
Heterostructures have lately been recognized as a viable implement to achieve high-energy Li-ion batteries(LIBs) because the as-formed built-in electric field can greatly accelerate the charge transfer kinetics. Herei...Heterostructures have lately been recognized as a viable implement to achieve high-energy Li-ion batteries(LIBs) because the as-formed built-in electric field can greatly accelerate the charge transfer kinetics. Herein, we have constructed the Mott-Schottky heterostructured VS2/MoS2 hybrids with tailorable 1T/2H phase based on their matchable formation energy, which are made of metallic and few-layered VS2 vertically grown on MoS2 surface. The density functional theory(DFT) calculations unveil that such heterojunctions drive the rearrangement of energy band with a facilitated reaction kinetics and enhance the Li adsorption energy more than twice compared to the MoS2 surface. Furthermore, the VS2 catalytically expedites the Li–S bond fracture and meantime the enriched Mo6+ enables the sulfur anchoring toward the oriented reaction with Li+to form Li2S, synergistically enhancing the reversibility of electrochemical redox. Consequently, the as-obtained VS2/MoS2 hybrids deliver a very large specific capacity of 1273 m Ah g^-1 at 0.1 A g^-1 with 61% retention even at 5 A g^-1. It can also stabilize 100 cycles at 0.5 A g^-1 and 500 cycles at 1 A g^-1. The findings provide in-depth insights into engineering heterojunctions towards the enhancement of reaction kinetics and reversibility for LIBs.展开更多
基金Project(2015BAB06B01) supported by the National Key Technology R&D Program of ChinaProject(2014CB643406) supported by the National Basic Research Program of China
文摘The lepidolite located in Yichun, Jiangxi Province, China, was adopted to investigate the recovery of alkali metals and leaching kinetics of lithium with sulphuric acid solution under atmospheric pressure. The results show that the recoveries of alkali metals were achieved under the leaching conditions: mass ratio of lepidolite with particle size less than 180 μm to sulphuric acid 1.2, leaching temperature 411 K, liquid-solid ratio 2.5∶1, and leaching time 10 h. Under the selected conditions for leaching experiment, the leaching rates of lithium, potassium, rubidium and caesium are 94.18%, 93.70%, 91.81% and 89.22%, respectively. The X-ray diffraction analysis for leaching residue indicates that no insoluble product forms during leaching. The chemical compositions of leaching residue reveal that trace iron, manganese and calcium disappear after acid leaching. The kinetics of leaching process for lithium follows shrinking core model of mixed control and the apparent activation energy is 17.21 kJ/mol. The reaction orders with respect to sulphuric acid concentration and liquid-solid ratio are determined to be 2.85 and 1.66, respectively. A semi-empirical rate equation was obtained to describe the leaching process. The kinetic analysis shows that the leaching process is controlled by diffusion through the insoluble layer of the associated minerals.
基金Project(51474237) supported by the National Natural Science Foundation of China
文摘An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investigated in an ore/HF/H2SO4 ratio of 1:3:2 g:mL:mL with leaching temperature ranging from 50 to 100°C.The results indicate that the leaching kinetics of Li fitted well with a model based on the shrinking core model.In addition,the leaching rate of Li was controlled by chemical reactions and diffusion through the product layers.The apparent activation energy Ea was calculated to be 32.68 kJ/mol.Solid films were formed because of the generation of insoluble products such as cryolithionite(Na3Li2Al2F12),cryolite(Na3AlF6),calcium fluoride(CaF2),potassium cryolite(K2AlF5),aluminum fluoride(AlF3),and fluorosilicates(Na2SiF6 or KNaSiF6).Furthermore,the effects of the ore/HF ratio and leaching temperature on the leaching behavior of Li,Al and Si were investigated.The results indicate that the ore/HF ratio and leaching temperature could clearly affect the distribution of HF molecules on the leaching of Li,Al and Si,which are important for the selective leaching of Li over Al and Si with this fluorine-based chemical method.
基金Project(50302016) supported by the National Natural Science Foundation of China
文摘The graphite was modified using pitch through dynamical melt-carbonization, and the effects of modification temperature and the amount of pitch on the characteristics of graphite were investigated. The structure and characteristics of the graphite were determined by X-ray diffractometry(XRD), scanning electron microscopy(SEM), particle size analysis and electrochemical measurements. The results show that the modified graphite has a disordered carbon/graphite composite structure, larger average particle diameter, greater tap density, and better electrochemical characteristics than the untreated graphite. The sample coated with 10% pitch dynamical melt-carbonized at 400 ℃ for 3 h and heat-treated at 850 ℃ for 2 h has better electrochemical performances with a reversible capacity of 360.5 mA·h/g, a irreversible capacity of 41.0 mA·h/g, and an initial coulombic efficiency of 89.8% compared with natural graphite and disordered carbon. The cycling stability of the Li/C cell with modified graphite as anodes is improved, and its capacity retention ratio at the 30th cycle is up to 94.37%.
基金This work was supported by the National Natural Science Foundation of China(51672082,21975074 and 91534202)the Basic Research Program of Shanghai(17JC1402300)+2 种基金the Shanghai Scientific and Technological Innovation Project(18JC1410500)the National Program for Support of Top-Notch Young Professionalsthe Fundamental Research Funds for the Central Universities(222201718002).
文摘Heterostructures have lately been recognized as a viable implement to achieve high-energy Li-ion batteries(LIBs) because the as-formed built-in electric field can greatly accelerate the charge transfer kinetics. Herein, we have constructed the Mott-Schottky heterostructured VS2/MoS2 hybrids with tailorable 1T/2H phase based on their matchable formation energy, which are made of metallic and few-layered VS2 vertically grown on MoS2 surface. The density functional theory(DFT) calculations unveil that such heterojunctions drive the rearrangement of energy band with a facilitated reaction kinetics and enhance the Li adsorption energy more than twice compared to the MoS2 surface. Furthermore, the VS2 catalytically expedites the Li–S bond fracture and meantime the enriched Mo6+ enables the sulfur anchoring toward the oriented reaction with Li+to form Li2S, synergistically enhancing the reversibility of electrochemical redox. Consequently, the as-obtained VS2/MoS2 hybrids deliver a very large specific capacity of 1273 m Ah g^-1 at 0.1 A g^-1 with 61% retention even at 5 A g^-1. It can also stabilize 100 cycles at 0.5 A g^-1 and 500 cycles at 1 A g^-1. The findings provide in-depth insights into engineering heterojunctions towards the enhancement of reaction kinetics and reversibility for LIBs.