Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated...Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.展开更多
To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- ga...To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- gated using FeCl3 as coextracting agent. Liquid-liquid extraction reaction mechanisms were proposed and the stoichiometry of tetrachloroferrate(III) complex with lithium was obtained by regressing the experimental data. It is found that the stoichiometry of tetrachloroferrate(III) to lithium in the complex is 1 : 1 with either TBP or MIBK as extractant in kerosene. The stoichiometry of the complex of TBP with Li was 1 : 1 and that of MIBK with Li was 2 : 1. The formed complexes of TBP and MIBK with lithium are determined to be LiFeCla-TBP and LiFeC14.2MIBK, respectively, according to the rule of neutralization.展开更多
Lithium elemental and isotopic disequilibrium has frequently been observed in the continental and oceanic mantle xenoliths, but its origin remains controversial. Here,we present a combined elemental and Li isotopic st...Lithium elemental and isotopic disequilibrium has frequently been observed in the continental and oceanic mantle xenoliths, but its origin remains controversial. Here,we present a combined elemental and Li isotopic study on variably metasomatised peridotite xenoliths entrained in the Cenozoic basalts from Shangzhi in Northeast (NE) China that provides insight into this issue. Li concentration (0.3–2.7 ppm) and δ7 Li (mostly 2‰–6‰) in olivine from the Shangzhi peridotites are similar to the normal mantle values and show roughly negative correlations with the indices of melt extraction(such as modal olivine and whole rock MgO). These features are consistent with variable degrees of partial melting. In contrast, clinopyroxene from the Shangzhi xenoliths shows significant Li enrichment (0.9–6.1 ppm) and anomalously light δ7 Li (-13.8‰ to7.7‰) relative to normal mantle values. Such features can be explained by Li diffusion from silicate melts or Li-rich fluids occurring over a very short time(several minutes to several hours). Moreover, the light Li isotopic compositions preserved in some bulk samples also indicate that these percolated melts/fluids have not had enough time to isotopically equilibrate with the bulk peridotite. We thus emphasize that Li isotopic fractionation in the Shangzhi mantle xenoliths is mainly related to Li diffusion from silicate melts or Li-rich fluids that took place shortly before or coincident with their entrainment into the host magmas.展开更多
基金Project(2015BAB04B01)supported by the National Key Technology R&D Program of ChinaProject(FA2017029)supported by Science and Technology Program of Chongzuo,ChinaProject(CSUZC201811)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.
基金Supported by the National High Technology Research and Development Program of China (2008AA06Z111)the Qinghai Key Technology R&D Program (2011-J-154)
文摘To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- gated using FeCl3 as coextracting agent. Liquid-liquid extraction reaction mechanisms were proposed and the stoichiometry of tetrachloroferrate(III) complex with lithium was obtained by regressing the experimental data. It is found that the stoichiometry of tetrachloroferrate(III) to lithium in the complex is 1 : 1 with either TBP or MIBK as extractant in kerosene. The stoichiometry of the complex of TBP with Li was 1 : 1 and that of MIBK with Li was 2 : 1. The formed complexes of TBP and MIBK with lithium are determined to be LiFeCla-TBP and LiFeC14.2MIBK, respectively, according to the rule of neutralization.
基金funded by the strategic priority research program(B)of the Chinese Academy of Sciences(XDB18000000)NSFC(41573009+1 种基金 41373042,41203031)Open research fund of the State Key Laboratory of Ore Deposit Geochemistry of China(SKLODG Grant#201204)
文摘Lithium elemental and isotopic disequilibrium has frequently been observed in the continental and oceanic mantle xenoliths, but its origin remains controversial. Here,we present a combined elemental and Li isotopic study on variably metasomatised peridotite xenoliths entrained in the Cenozoic basalts from Shangzhi in Northeast (NE) China that provides insight into this issue. Li concentration (0.3–2.7 ppm) and δ7 Li (mostly 2‰–6‰) in olivine from the Shangzhi peridotites are similar to the normal mantle values and show roughly negative correlations with the indices of melt extraction(such as modal olivine and whole rock MgO). These features are consistent with variable degrees of partial melting. In contrast, clinopyroxene from the Shangzhi xenoliths shows significant Li enrichment (0.9–6.1 ppm) and anomalously light δ7 Li (-13.8‰ to7.7‰) relative to normal mantle values. Such features can be explained by Li diffusion from silicate melts or Li-rich fluids occurring over a very short time(several minutes to several hours). Moreover, the light Li isotopic compositions preserved in some bulk samples also indicate that these percolated melts/fluids have not had enough time to isotopically equilibrate with the bulk peridotite. We thus emphasize that Li isotopic fractionation in the Shangzhi mantle xenoliths is mainly related to Li diffusion from silicate melts or Li-rich fluids that took place shortly before or coincident with their entrainment into the host magmas.