期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进多种群遗传算法的锂电池参数辨识
1
作者 王亚涛 陆玮 +2 位作者 倪松挺 杨化超 吴尔卡 《电工技术》 2023年第16期33-36,共4页
使用一种改进多种群遗传算法对锂电池的等效电路模型参数进行辨识,该算法的特点是将DNA编码方法与粒子群遗传算法融入多种群遗传算法中,有效提高了算法的精度和局部搜索能力。结果表明,通过使用该算法得到的锂电池参数,对锂电池电压进... 使用一种改进多种群遗传算法对锂电池的等效电路模型参数进行辨识,该算法的特点是将DNA编码方法与粒子群遗传算法融入多种群遗传算法中,有效提高了算法的精度和局部搜索能力。结果表明,通过使用该算法得到的锂电池参数,对锂电池电压进行预测,得到的预测电压和实测电压的平均绝对误差为4.35×10^(-4)V,精度比传统多种群遗传算法有明显提高。该算法对准确辨识锂电池参数以及精确估计锂电池SOC等有重要意义。 展开更多
关键词 锂电池参数辨识 多种群遗传算法 DNA编码 粒子群遗传算法
下载PDF
Online SOC estimation based on modified covariance extended Kalman filter for lithium batteries of electric vehicles 被引量:4
2
作者 Fan Jiayu Xia Jing +1 位作者 Chen Nan Yan Yongjun 《Journal of Southeast University(English Edition)》 EI CAS 2020年第2期128-137,共10页
To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation alg... To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation algorithm is proposed by combining the online parameter identification method and the modified covariance extended Kalman filter(MVEKF)algorithm.Based on the parameters identified on line with the multiple forgetting factors recursive least squares methods,the newly-established algorithm recalculates the covariance in the iterative process with the modified estimation and updates the process gain which is used for the next state estimation to decrease errors of the filter.Experiments including constant pulse discharging and the dynamic stress test(DST)demonstrate that compared with the EKF algorithm,the MVEKF algorithm produces fewer estimation errors and can reduce the errors to 5%at most under the complex charging and discharging conditions of batteries.In the charging process under the DST condition,the EKF produces a larger deviation and lacks stability,while the MVEKF algorithm can estimate SOC stably and has a strong robustness.Therefore,the established MVEKF algorithm is suitable for complex and changeable working conditions of batteries for electric vehicles. 展开更多
关键词 electric vehicle battery management system(BMS) lithium battery parameter identification state of charge(SOC)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部