锂离子电容器(LiC)技术广泛应用于汽车和固定设备,要求通过电热模型获取其电、热参数,以便进行寿命建模、安全评估和热管理。本文综述了锂离子电容器的建模方法,包括电化学模型、等效电路模型(ECM)和分数阶模型(FOM)。电化学模型虽然精...锂离子电容器(LiC)技术广泛应用于汽车和固定设备,要求通过电热模型获取其电、热参数,以便进行寿命建模、安全评估和热管理。本文综述了锂离子电容器的建模方法,包括电化学模型、等效电路模型(ECM)和分数阶模型(FOM)。电化学模型虽然精确,但计算复杂,适用于老化趋势模拟。ECM以电阻–电容网络为基础,适用于实时能量管理,但难以描述扩散阶段行为。FOM通过非整数阶微分方程提高模型精度,能够更好地模拟锂离子电容器的阻抗行为和温度影响。文章还探讨了锂离子电容器的寿命模型和热模型,指出温度对电池性能的重大影响,并总结了预锂化技术对提升锂离子电容器性能的作用,包括减少初始锂损耗、拓宽电压窗口、优化阳极工作电位等。Lithium-ion capacitor (LiC) are widely used in cars and stationary equipment, necessitating electrothermal models to determine their electrical and thermal parameters for lifecycle modeling, safety assessments, and thermal management. This article reviews the various modeling approaches for lithium-ion capacitors, including electrochemical models, equivalent circuit models (ECM), and fractional-order models (FOM). While electrochemical models offer accuracy, they are computationally intensive and best suited for simulating aging trends. ECM, which rely on resistor-capacitor networks, are ideal for real-time energy management but struggle to capture diffusion stage behavior. FOM enhance model accuracy through non-integer differential equations and offer better simulation of impedance behavior and temperature effects. The article also covers life and thermal modeling for lithium-ion capacitors, highlights the significant impact of temperature on battery performance, and summarizes how pre-lithiation technology can enhance performance by reducing initial lithium loss, widening the voltage window, and optimizing anode operating potential.展开更多
文摘锂离子电容器(LiC)技术广泛应用于汽车和固定设备,要求通过电热模型获取其电、热参数,以便进行寿命建模、安全评估和热管理。本文综述了锂离子电容器的建模方法,包括电化学模型、等效电路模型(ECM)和分数阶模型(FOM)。电化学模型虽然精确,但计算复杂,适用于老化趋势模拟。ECM以电阻–电容网络为基础,适用于实时能量管理,但难以描述扩散阶段行为。FOM通过非整数阶微分方程提高模型精度,能够更好地模拟锂离子电容器的阻抗行为和温度影响。文章还探讨了锂离子电容器的寿命模型和热模型,指出温度对电池性能的重大影响,并总结了预锂化技术对提升锂离子电容器性能的作用,包括减少初始锂损耗、拓宽电压窗口、优化阳极工作电位等。Lithium-ion capacitor (LiC) are widely used in cars and stationary equipment, necessitating electrothermal models to determine their electrical and thermal parameters for lifecycle modeling, safety assessments, and thermal management. This article reviews the various modeling approaches for lithium-ion capacitors, including electrochemical models, equivalent circuit models (ECM), and fractional-order models (FOM). While electrochemical models offer accuracy, they are computationally intensive and best suited for simulating aging trends. ECM, which rely on resistor-capacitor networks, are ideal for real-time energy management but struggle to capture diffusion stage behavior. FOM enhance model accuracy through non-integer differential equations and offer better simulation of impedance behavior and temperature effects. The article also covers life and thermal modeling for lithium-ion capacitors, highlights the significant impact of temperature on battery performance, and summarizes how pre-lithiation technology can enhance performance by reducing initial lithium loss, widening the voltage window, and optimizing anode operating potential.