期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
改进支持向量回归的锂离子电池可用容量估计 被引量:1
1
作者 史永胜 马铭远 +2 位作者 丁恩松 余强 李雷 《电源技术》 CAS 北大核心 2019年第12期1996-2000,共5页
为了提高锂离子电池当前可用容量的预测精度,采用支持向量回归并对参数进行优化的算法。将样本中的部分边界向量作为支持向量,以平均放电电压、平均放电温度以及等压降放电时间序列作为输入,并结合优化算法对惩罚函数C和核宽度g两个参... 为了提高锂离子电池当前可用容量的预测精度,采用支持向量回归并对参数进行优化的算法。将样本中的部分边界向量作为支持向量,以平均放电电压、平均放电温度以及等压降放电时间序列作为输入,并结合优化算法对惩罚函数C和核宽度g两个参数进行优化,拟合出泛化性良好的容量估计方程。验证结果表明,采用遗传算法时,预测精度可高达99.6%。该方法无需推导具体的物理模型,对数据测量精度的要求较高,能够在各种锂离子电池中得到广泛的应用。 展开更多
关键词 锂离子电池容量 支持向量回归 遗传算法
下载PDF
Synthesis, characterization and electrochemical performance of AlF_3-coated Li_(1.2)(Mn_(0.54)Ni_(0.16)Co_(0.08))O_2 as cathode for Li-ion battery 被引量:2
2
作者 李艳 刘开宇 +2 位作者 吕美玉 魏来 钟剑剑 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3534-3540,共7页
Li-rich layered transitional metal oxide Li1.2(Mn0.54Ni0.16Co0.08)O2 was prepared by sol-gel method and further modified by AlF3 coating via a wet process. The bare and AlF3-coated Li1.2(Mn0.54Ni0.16Co0.08)O2 samples ... Li-rich layered transitional metal oxide Li1.2(Mn0.54Ni0.16Co0.08)O2 was prepared by sol-gel method and further modified by AlF3 coating via a wet process. The bare and AlF3-coated Li1.2(Mn0.54Ni0.16Co0.08)O2 samples were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), and high resolution transmission electron microscope(HRTEM). XRD results show that the bare and AlF3-coated samples have typical hexagonal α-Na Fe O2 structure, and AlF3-coated layer does not affect the crystal structure of the bare Li1.2(Mn0.54Ni0.16Co0.08)O2. Morphology measurements present that the AlF3 layer with a thickness of 5-7 nm is coated on the surface of the Li1.2(Mn0.54Ni0.16Co0.08)O2 particles.Galvanostatic charge-discharge tests at various rates show that the AlF3-coated Li1.2(Mn0.54Ni0.16Co0.08)O2 has an enhanced electrochemical performance compared with the bare sample. At 1C rate, it delivers an initial discharge capacity of 208.2 m A·h/g and a capacity retention of 72.4% after 50 cycles, while those of the bare Li1.2(Mn0.54Ni0.16Co0.08)O2 are 191.7 m A·h/g and 51.6 %, respectively. 展开更多
关键词 lithium-ion battery Li1.2(Mn0.54Ni0.16Co0.08)O2 AlF3 surface coating capacity retention
下载PDF
Influence of synthesis temperature on electrochemical performance of polyoxomolybdate as cathode material of lithium ion battery 被引量:1
3
作者 李文良 倪尔福 +1 位作者 李新海 郭华军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2687-2692,共6页
In order to improve the electrochemical performance of polyoxomolybdate Na3[AlMo6O24H6](NAM) as the cathode material of lithium ion battery, the NAM materials with small particle size were synthesized by elevatingth... In order to improve the electrochemical performance of polyoxomolybdate Na3[AlMo6O24H6](NAM) as the cathode material of lithium ion battery, the NAM materials with small particle size were synthesized by elevatingthe synthesistemperaturein the solution.The as-prepared NAM materials were investigated by FT-IR, XRD, SEM and EIS. Their discharge-charge and cycle performance were also tested. The resultsshowthat the particle size decreasesto less than10μm at the temperature ofhigher than 40℃.When synthesized at 80℃,the NAMwiththe smallest particle size (-3μm)exhibitsthe best electrochemical performance such ashigh initial discharge capacity of 409 mA·h/gandcoulombic efficiency of 95% in the first cycle at 0.04C. 展开更多
关键词 POLYOXOMOLYBDATE lithium ion battery cathode material high capacity
下载PDF
Mechanism for capacity fading of 18650 cylindrical lithium ion batteries 被引量:4
4
作者 Jian-liang CHENG Xin-hai LI +1 位作者 Zhi-xing WANG Hua-jun GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1602-1607,共6页
The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by X... The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by XRD,SEM,EIS and CV.Impedance measurement shows an overall increase in the cell resistance upon cycling.Moreover,it also presents anincreased charge-transfer resistance(Rct)for the cell cycled at RT.CV test shows that the reversibility of lithium ioninsertion/extraction reaction is reduced.The capacity fading for the cells cycled can be explained by taking into account the repeatedfilm formation over the surface of anode and the side reactions.The products of side reactions deposited on separator are able toreduce the porosity of separator.As a result,the migration resistance of lithium ion between the cathode and anode would beincreased,leading the fading of capacity and potential. 展开更多
关键词 18650 lithium ion battery capacity fading cycle performance
下载PDF
A new state of charge determination method for battery management system 被引量:4
5
作者 朱春波 王铁成 HURLEY W G 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第6期624-630,共7页
State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additio... State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery’s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper. 展开更多
关键词 state of charge BATTERY battery management system
下载PDF
Mild oxidation treatment of graphite anode for Li-ion batteries 被引量:1
6
作者 郭华军 李新海 +2 位作者 王志兴 彭文杰 郭永兴 《Journal of Central South University of Technology》 2005年第1期50-54,共5页
The graphite was modified by mild oxidation, and the effects of modification temperature and soaking time on the characteristics of graphite were investigated. The structure and characteristics of the graphite were de... The graphite was modified by mild oxidation, and the effects of modification temperature and soaking time on the characteristics of graphite were investigated. The structure and characteristics of the graphite were determined by X-ray diffraction, scanning electron microscopy, BET surface area, particle size analysis and electrochemical measurements. The results show that the modified graphite has a better-developed crystallite structure, larger average particle diameter, smaller surface area, and better electrochemical characteristics than the untrented graphite. The sample mild-oxidized at 600℃ for 3h has the best electrochemical performances with a reversible capacity of 304.5mA·h/g, a irreversible capacity of 66.4mA·h/g, and a initial coulombic efficiency of 82.1%. The charge/discharge properties and a cycling stability of the prototype lithium ion batteries with modified graphite as anodes are improved. Its capacity retention ratio at the 200th cycle is enhanced from 66.75% to 90.15%. 展开更多
关键词 GRAPHITE ANODE lithium ion battery capacity
下载PDF
Experimental study on heat generation and dissipation performance of PEV Lithium-ion battery 被引量:3
7
作者 孙逢春 Chen Ke Lin Cheng Wang Zhenpo 《High Technology Letters》 EI CAS 2010年第1期1-5,共5页
Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal c... Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward. 展开更多
关键词 pure electric vehicle (PEV) lithium-ion battery heat generation heat dissipation
下载PDF
Nano-Li3V2(PO4)3/C Synthesized by Thermal Polymerization Method as Cathode Material for Lithium Ion Batteries
8
作者 Bin Cheng Lian-sheng Jiao +3 位作者 Zhong-feng Tang Sheng-jie Zhang Hong-li Chen Chun-hua Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第6期699-702,I0001,共5页
A nano-Li3V2(PO4)3/C powder was successfully prepared by a thermal polymerization method. The particle sizes of the intermediate product powder and the final product Li3V2(PO4)3 are all less than 200 nm. The carbo... A nano-Li3V2(PO4)3/C powder was successfully prepared by a thermal polymerization method. The particle sizes of the intermediate product powder and the final product Li3V2(PO4)3 are all less than 200 nm. The carbon is partially coated on the surface of Li3V2(PO4)3 particles and the rest exists between particles with a total carbon content of 4.6wt%. This nano-Li3V2(PO4)3/C sample shows a discharge capacity of 124 mAh/g with-out capacity fading after 100 cycles at 0.1 C in the voltage rang of 3.0-4.3 V. Excellent rate performance is also achieved with a capacity of 80 mAh/g at 20 C in 3.0-4.3 V and 100 mAh/g at 10 C in 3.0-4.8 V. This study suggests that the thermal polymerization method is suitable to synthesize nano-Li3V2(PO4)3/C materials. 展开更多
关键词 Lithium vanadium phosphate Thermal polymerization NANOPARTICLES Acrylic acid
下载PDF
High-capacity organic electrode material calix[4] quinone/CMK-3 nanocomposite for lithium batteries 被引量:8
9
作者 Shibing Zheng Huimin Sun +2 位作者 Bing Yan Jinyan Hu Weiwei Huang 《Science China Materials》 SCIE EI CSCD 2018年第10期1285-1290,共6页
Organic lithium-ion batteries(OLIBs) represent a new generation of power storage approach for their environmental benignity and high theoretical specific capacities.However, it has the disadvantage with regard to th... Organic lithium-ion batteries(OLIBs) represent a new generation of power storage approach for their environmental benignity and high theoretical specific capacities.However, it has the disadvantage with regard to the dissolution of active materials in organic electrolyte. In this study, we encapsulated high capacity material calix[4]quinone(C4Q) in the nanochannels of ordered mesoporous carbon(OMC)CMK-3 with various mass ratios ranging from 1:3 to 3:1, and then systematically investigated their morphology and electrochemical properties. The nanocomposites characterizations confirmed that C4Q is almost entirely capsulated in the nanosized pores of the CMK-3 while the mass ratio is less than2:1. As cathodes in lithium-ion batteries, the C4Q/CMK-3(1:2) nanocomposite exhibits optimal initial discharge capacity of 427 mA h g^(-1) with 58.7% cycling retention after 100 cycles. Meanwhile, the rate performance is also optimized with a capacity of 170.4 mA h g^(-1) at 1 C. This method paves a new way to apply organic cathodes for lithium-ion batteries. 展开更多
关键词 organic lithiumion batteries nanocomposites high-capacity cathode
原文传递
Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes 被引量:14
10
作者 Hao Wu Ming Xu Yongcheng Wang Gengfeng Zheng 《Nano Research》 SCIE EI CAS CSCD 2013年第3期167-173,共7页
We report a facile, two-step hydrothermal synthesis of a novel Co304/a-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and st... We report a facile, two-step hydrothermal synthesis of a novel Co304/a-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and stability. The single-crystalline, primary C0304 nanowire trunk arrays directly grown on Ti substrates allow for efficient electrical and ionic transport. The secondary a-Fe2O3 branches provide enhanced surface area and high theoretical Li+ storage capacity, and can also serve as volume spacers between neighboring Co3O4 NW arrays to maintain electrolyte penetration as well as reduce the aggregation during Li+ intercalation, thus leading to improved electrochemical energy storage performance. 展开更多
关键词 CO3O4 a-Fe2O3 NANOWIRE BRANCHED lithium-ion battery Nyquist plot
原文传递
Interconnected CoS/NC-CNTs network as highperformance anode materials for lithium-ion batteries 被引量:4
11
作者 Lingjun Kong Yingying Liu +4 位作者 Hui Huang Ming Liu Wei Xu Baiyan Li Xian-He Bu 《Science China Materials》 SCIE EI CAS CSCD 2021年第4期820-829,共10页
Cobalt disulfide(CoS_(2))has been considered a promising anode material for lithium-ion batteries(LIBs)due to its high theoretical capacity of 870 mA h g^(-1).However,its practical applications have been hampered by u... Cobalt disulfide(CoS_(2))has been considered a promising anode material for lithium-ion batteries(LIBs)due to its high theoretical capacity of 870 mA h g^(-1).However,its practical applications have been hampered by undesirable cycle life and rate performance due to the volume change and deterioration of electronic conductivity during the dischargecharge process.In this study,an interconnected CoS_(2)/N-doped carbon/carbon nanotube(CoS_(2)/NC-CNTs-700)network was successfully prepared to boost its lithium storage performance,in which small-size CoS_(2)nanoparticles were confined by N-doped carbon and uniformly decorated on the surface of CNTs.N-doped carbon can effectively accommodate the large volume expansion of CoS_(2)nanoparticles.Additionally,the 3D conductive nanostructure design offers adequate electrical/mass transport spacing.Benefiting from this,the CoS_(2)/NCCNTs-700 electrode demonstrates a long cycle life(a residual capacity of 719 mA h g^(-1)after 100 cycles at 0.2 A g^(-1))and outstanding rate performance(335 mA hg^(-1)at 5.0 A g^(-1)).This study broadens the design and application of CoS_(2)and fosters the advances in battery anode research. 展开更多
关键词 metal-organic frameworks CoS2 carbon nanotubes ANODE lithium-ion batteries
原文传递
Hierarchical flower-like spinel manganese-based oxide nanosheets for high-performance lithium ion battery 被引量:4
12
作者 Quanqing Zhao Zefeng Guo +5 位作者 Yu Wu Liqin Wang Zhanli Han Xilan Ma Youqi Zhu Chuanbao Cao 《Science China Materials》 SCIE EI CSCD 2019年第10期1385-1392,共8页
Hierarchical flower-structured two-dimensional(2 D)nanosheet is favorable for electrochemical reactions.The unique structure not only exposes the maximized active sites and shortens ion/electron diffusion channels,but... Hierarchical flower-structured two-dimensional(2 D)nanosheet is favorable for electrochemical reactions.The unique structure not only exposes the maximized active sites and shortens ion/electron diffusion channels,but also inhibits the structural strain during cycling processes.Herein,we report the hierarchical flower-like pure spinel manganese-based oxide nanosheets synthesized via a template-orientated strategy.The oriented template is fabricated by decomposition of carbonate obtained from"bubble reaction",via an alcoholassisted hydrothermal process.The resultant spinel manganese-based oxide nanosheets simultaneously possess excellent rate capability and cycling stability.The high-voltage LiNi0.5Mn1.5O4(LNMO-HF)has a uniform phase distribution without the common impurity phase LixNi1-xO2 and NixO.Besides,the LNMO-HF delivers high discharge capacity of142.6 mA h g-with specific energy density of 660.7 W h kg 1 at 1 C under 55℃.More importantly,the template-orientated strategy can be extended to the synthesis of LiMn2 O4(LMO),which can achieve 88.12%capacity retention after 1000 cycles. 展开更多
关键词 nanosheet flower-like structure manganese-based oxide lithium ion battery
原文传递
Self-assembled multifunctional Fe_(3)O_(4) hierarchical microspheres: high-efficiency lithium-ion battery materials and hydrogenation catalysts 被引量:2
13
作者 Konglin Wu Min Ling +7 位作者 Peiyuan Zeng Liang Zhang Tao Wu Pingli Guan Weng-Chon Cheong Zheng Chen Zhen Fang Xianwen Wei 《Science China Materials》 SCIE EI CAS CSCD 2021年第5期1058-1070,共13页
Self-assembled Fe_(3)O_(4)hierarchical microspheres(HMSs) were prepared by a one-pot synchronous reduction–self-assembling (SRSA) hydrothermal method.In this simple and inexpensive synthetic process,only glycerol,wat... Self-assembled Fe_(3)O_(4)hierarchical microspheres(HMSs) were prepared by a one-pot synchronous reduction–self-assembling (SRSA) hydrothermal method.In this simple and inexpensive synthetic process,only glycerol,water,and a single iron source (potassium ferricyanide (K3[Fe(CN)6]))were employed as reactants without additional reductants,surfactants,or additives.The iron source,K3[Fe(CN)6],and glycerol significantly affected the synthesis of Fe_(3)O_(4)HMSs.Fe_(3)O_(4)HMSs with a self-assembled spherical shape readily functioned as high-performance anode materials for lithiumion batteries with a specific capacity of>1000 mA h g^(-1)at0.5 A g^(-1)after 270 cycles.Further charging and discharging results revealed that Fe_(3)O_(4)HMSs displayed good reversible performance (>1000 mA h g^(-1)) and cycling stability (700 cycles) at 0.5 A g^(-1).Furthermore,as multifunctional materials,the as-obtained Fe_(3)O_(4)HMSs also exhibited high saturation magnetization (99.5 emu g^(-1)) at room temperature (25°C) and could be further employed as efficient and magnetically recyclable catalysts for the hydrogenation of nitro compounds. 展开更多
关键词 iron oxide hierarchical structure energy storage material lithium-ion battery hydrogenation catalyst
原文传递
Boosting reaction kinetics and reversibility in Mott-Schottky VS/MoS heterojunctions for enhanced lithium storage 被引量:4
14
作者 Yuru Dong Yu Liu +3 位作者 Yanjie Hu Kun Ma Hao Jiang Chunzhong Li 《Science Bulletin》 SCIE EI CAS CSCD 2020年第17期1470-1478,M0004,共10页
Heterostructures have lately been recognized as a viable implement to achieve high-energy Li-ion batteries(LIBs) because the as-formed built-in electric field can greatly accelerate the charge transfer kinetics. Herei... Heterostructures have lately been recognized as a viable implement to achieve high-energy Li-ion batteries(LIBs) because the as-formed built-in electric field can greatly accelerate the charge transfer kinetics. Herein, we have constructed the Mott-Schottky heterostructured VS2/MoS2 hybrids with tailorable 1T/2H phase based on their matchable formation energy, which are made of metallic and few-layered VS2 vertically grown on MoS2 surface. The density functional theory(DFT) calculations unveil that such heterojunctions drive the rearrangement of energy band with a facilitated reaction kinetics and enhance the Li adsorption energy more than twice compared to the MoS2 surface. Furthermore, the VS2 catalytically expedites the Li–S bond fracture and meantime the enriched Mo6+ enables the sulfur anchoring toward the oriented reaction with Li+to form Li2S, synergistically enhancing the reversibility of electrochemical redox. Consequently, the as-obtained VS2/MoS2 hybrids deliver a very large specific capacity of 1273 m Ah g^-1 at 0.1 A g^-1 with 61% retention even at 5 A g^-1. It can also stabilize 100 cycles at 0.5 A g^-1 and 500 cycles at 1 A g^-1. The findings provide in-depth insights into engineering heterojunctions towards the enhancement of reaction kinetics and reversibility for LIBs. 展开更多
关键词 HETEROSTRUCTURE VS2/MoS2 Interface effect High-energy density Li-ion batteries
原文传递
Cu_2O nanowires as anode materials for Li-ion rechargeable batteries 被引量:3
15
作者 CHEN Rui WANG Ying +9 位作者 NULI YanNa YU Yuan GAO PengFei CHEN Qiang WEI LiangMing HU NaTao YANG Zhi GAO RunGang ZHANG LiLing ZHANG YaFei 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第6期1073-1076,共4页
Li-ion batteries are a key technology for multiple clean energy applications.In this study,Cu2O nanowires were obtained by the reduction of cupric acetate with pyrrole.The resulting Cu2O nanowires exhibited excellent ... Li-ion batteries are a key technology for multiple clean energy applications.In this study,Cu2O nanowires were obtained by the reduction of cupric acetate with pyrrole.The resulting Cu2O nanowires exhibited excellent reversible capacities of 470mAh g-1 at rate of 1 C after 100 cycles.The results show that the Cu2O nanowires had more capacity than materials previously reported.No fading was observed over 100 cycles of charging and discharging.The compound metal Cu and incorporation of the conducting polymer polypyrrole(PPy)improved the conductivity of Cu2O and enhanced the stability of the electrode during cycling.The results from this study imply that Cu2O nanowires with high capacity and good cycle retention could be excellent candidates as anode materials for Li-ion rechargeable batteries. 展开更多
关键词 POLYPYRROLE cuprous oxide ANODE lithium-ion battery
原文传递
Estimating the thickness of diffusive solid electrolyte interface 被引量:1
16
作者 XiaoHe Wang WenHao Shen +2 位作者 XianFu Huang JinLiang Zang YaPu Zhao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第6期61-68,共8页
electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which ar... electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which are highly dependent on the thickness. Thus, understanding the formation mechanism and the SEI thickness is of prime interest. First, we apply dimensional analysis to obtain an explicit relation between the thickness and the number density in this study. Then the SEI thickness in the initial charge-discharge cycle is analyzed and estimated for the first time using the Cahn-Hilliard phase-field model. In addition, the SEI thickness by molecular dynamics simulation validates the theoretical results. It has been shown that the established model and the simulation in this paper estimate the SEI thickness concisely within order-of-magnitude of nanometers. Our results may help in evaluating the performance of SEI and assist the future design of Li-ion battery. 展开更多
关键词 lithium-ion battery solid electrolyte interface diffusion model thickness estimation
原文传递
Enhancing the reversible capacity and cycle stability of lithium-ion batteries with Li-compensation material Li_(6)CoO_(4)
17
作者 Ziyu Na Chao Lai +4 位作者 Jiang Zhou Hongzhou Zhang Dawei Song Xixi Shi Lianqi Zhang 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期620-628,共9页
High-capacity anode materials,such as SiO and Si/C,are considered promising candidates for high-energydensity lithium-ion batteries.However,the low initial Coulombic efficiency of these anode materials induced by side... High-capacity anode materials,such as SiO and Si/C,are considered promising candidates for high-energydensity lithium-ion batteries.However,the low initial Coulombic efficiency of these anode materials induced by side reactions(forming Li_(2)O and lithium silicate)and the formation of solid electrolyte interface film reduces the active Liions and causes low-discharge capacity.Adding a Li-compensation material in the cathode or anode is an effective strategy to overcome this problem.The most used Li-compensation material is the stabilized lithium metal powder.However,this strategy has high safety risks,high costs,and is challenging to quantify.Herein,the Li-compensation material of Li_(6)CoO_(4) is synthesized and investigated.The preparation conditions,stability in the air,delithiation mechanism,and structural transformation are analyzed and discussed.Electrochemical tests reveal that the discharge capacity and capacity retention of the full pouch cells(3-Ah)with Li_(6)CoO_(4) additive is significantly improved.Also,the reason for such improvement is investigated.This work provides an effective strategy of Li-compensating technology to enhance the electrochemical performance of lithium-ion batteries. 展开更多
关键词 lithium-ion batteries Li-compensation Li_(6)CoO_(4) Coulombic efficiency cycle performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部