期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Effects of carbon sources on electrochemical performance of Li_4Ti_5O_(12)/C composite anode materials 被引量:1
1
作者 刘萍 张治安 +1 位作者 李劼 赖延清 《Journal of Central South University》 SCIE EI CAS 2010年第6期1207-1210,共4页
Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose, sucrose, and starch as carbon sources, respectively. The effects of carbon sources on the structure, morphology, a... Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose, sucrose, and starch as carbon sources, respectively. The effects of carbon sources on the structure, morphology, and electrochemical performance of Li4Ti5O12/C composite materials were investigated by SEM, XRD and electrochemical tests. The results indicate that carbon sources have almost no effect on the structure of Li4Ti5O12/C composite materials. The initial discharge capacities of the Li4Ti1O12/C composite materials are slightly lower than those of as-synthesized Li4Ti5O12. However, Li4Ti5O12/C composite materials show better electrochemical rate performance than the as-synthesized Li4Ti5O12. The capacity retention (79%) of the Li4Ti5O12/C composite materials with starch as carbon source, is higher than that of Li4Ti5O12/C composite materials with glucose and sucrose as carbon source at current rate of 2.0C. 展开更多
关键词 lithium-ion battery anode material LI4TI5O12 CARBON electrochemical performance
下载PDF
Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries 被引量:4
2
作者 DENG Zhao HUANG Xing +2 位作者 ZHAO Xu CHENG Hua WANG Hong-en 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1481-1492,共12页
Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical s... Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical spherical MnO2 containing coherent amorphous/crystalline domained by a simple yet effective redox precipitation reaction at room temperature.Further,flower-like CoMn2O4 constructed by single-crystalline spinel nanosheets has been fabricated using MnO2 as precursor.This mild methodology avoids undesired particle aggregation and loss of active surface area in conventional hydrothermal or solid-state processes.Moreover,both MnO2 and CoMn2O4 nanosheets manifest superior lithium-ion storage properties,rendering them promising applications in LIBs and other energy-related fields. 展开更多
关键词 manganese oxides nanostructures anode materials lithium ion batteries ELECTROCHEMISTRY
下载PDF
Electrochemical properties of CoFe3Sb12 as potential anode material for lithium-ion batteries
3
作者 赵新兵 钟耀东 曹高劭 《Journal of Zhejiang University Science》 EI CSCD 2004年第4期418-421,共4页
A skutterudite-related antimonide, CoFe3Sb12,was prepared with vacuum melting.XRD analysis showed the material contained Sb, FeSb2, CoSb2 and CoSb3 phases.The electrochemical properties of the ball-milled CoFe3Sb12-10... A skutterudite-related antimonide, CoFe3Sb12,was prepared with vacuum melting.XRD analysis showed the material contained Sb, FeSb2, CoSb2 and CoSb3 phases.The electrochemical properties of the ball-milled CoFe3Sb12-10wt% graphite composite were studied using pure lithium as the reference electrode. A maximal lithium inserting capacity of about 860 mAh/g was obtained in the first cycle.The reversible capacity of the material was about 560mAh/g in the first cycle and decreased to ca.320 mAh/g and 250 mAh/g after 10 and 20 cycles respectively.Ex-situ XRD analyses showed that the antimonides in the pristine material were decomposed after the first discharge and that antimony was the active element for lithium to insert into the host material. 展开更多
关键词 CoFe_3Sb_(12) Anode materials Lithium-ion batteries Electrochemical properties
下载PDF
Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes 被引量:14
4
作者 Hao Wu Ming Xu Yongcheng Wang Gengfeng Zheng 《Nano Research》 SCIE EI CAS CSCD 2013年第3期167-173,共7页
We report a facile, two-step hydrothermal synthesis of a novel Co304/a-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and st... We report a facile, two-step hydrothermal synthesis of a novel Co304/a-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and stability. The single-crystalline, primary C0304 nanowire trunk arrays directly grown on Ti substrates allow for efficient electrical and ionic transport. The secondary a-Fe2O3 branches provide enhanced surface area and high theoretical Li+ storage capacity, and can also serve as volume spacers between neighboring Co3O4 NW arrays to maintain electrolyte penetration as well as reduce the aggregation during Li+ intercalation, thus leading to improved electrochemical energy storage performance. 展开更多
关键词 CO3O4 a-Fe2O3 NANOWIRE BRANCHED lithium-ion battery Nyquist plot
原文传递
Facile synthesis of hollow Ti2Nb10O29 microspheres for high-rate anode of Li-ion batteries 被引量:4
5
作者 Yong-Gang Sun Tian-Qi Sun +5 位作者 Xi-Jie Lin Xian-Sen Tao Dong Zhang Chen Zeng An-Min Cao Li-Jun Wan 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第6期670-676,共7页
Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a co... Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a composite oxide seriously limits its practical capacity,which becomes a serious concern especially when a high rate charge/discharge capability is expected.Here,using a modified template-assisted synthesis protocol,which features an in-situ entrapment of both titanium and niobium species during the formation of polymeric microsphere followed by a pyrolysis process,we succeed in preparing hollow microspheres of titanium niobium oxide with high efficiency in structural control.When used as an anode material,the structurally-controlled hollow sample delivers high reversible capacity(103.7 m A h g^(-1)at 50 C)and extraordinary cycling capability especially at high charge/discharge currents(164.7 m A h g^(-1)after 500 cycles at 10 C). 展开更多
关键词 hollow microspheres Ti2Nb10O29 anode materials high rate capability Li-ion batteries
原文传递
Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes 被引量:6
6
作者 William McSweeney 《Nano Research》 SCIE EI CAS CSCD 2015年第5期1395-1442,共48页
This review outlines the developments and recent progress in metal-assisted chemical etching of silicon, summarizing a variety of fundamental and innovative processes and etching methods that form a wide range of nano... This review outlines the developments and recent progress in metal-assisted chemical etching of silicon, summarizing a variety of fundamental and innovative processes and etching methods that form a wide range of nanoscale silicon structures. The use of silicon as an anode for Li-ion batteries is also reviewed, where factors such as film thickness, doping, alloying, and their response to reversible lithiation processes are summarized and discussed with respect to battery cell performance. Recent advances in improving the performance of silicon-based anodes in Li-ion batteries are also discussed. The use of a variety of nanostructured silicon structures formed by many different methods as Li-ion battery anodes is outlined, focusing in particular on the influence of mass loading, core-shell structure, conductive additives, and other parameters. The influence of porosity, dopant type, and doping level on the electrochemical response and cell performance of the silicon anodes are detailed based on recent findings. Perspectives on the future of silicon and related materials, and their compositional and structural modifications for energy storage via several electrochemical mechanisms, are also provided. 展开更多
关键词 SILICON Li-ion battery nanostructures NANOWIRES ELECTROCHEMISTRY energy storage ETCHING
原文传递
Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes 被引量:18
7
作者 Mingyuan Ge Jiepeng Rong +3 位作者 Xin Fang Anyi Zhang Yunhao Lu Chongwu Zhou 《Nano Research》 SCIE EI CAS CSCD 2013年第3期174-181,共8页
Nanostructured silicon has generated significant excitement for use as the anode material for lithium-ion batteries; however, more effort is needed to produce nanostructured silicon in a scalable fashion and with good... Nanostructured silicon has generated significant excitement for use as the anode material for lithium-ion batteries; however, more effort is needed to produce nanostructured silicon in a scalable fashion and with good performance. Here, we present a direct preparation of porous silicon nanoparticles as a new kind of nanostructured silicon using a novel two-step approach combining controlled boron doping and facile electroless etching. The porous silicon nanoparticles have been successfully used as high performance lithium-ion battery anodes, with capacities around 1,400 mA.h/g achieved at a current rate of 1 A/g, and 1,000 mA.h/g achieved at 2 A/g, and stable operation when combined with reduced graphene oxide and tested over up to 200 cycles. We attribute the overall good performance to the combination of porous silicon that can accommodate large volume change during cycling and provide large surface area accessible to electrolyte, and reduced graphene oxide that can serve as an elastic and electrically conductive matrix for the porous silicon nanoparticles. 展开更多
关键词 porous siliconnanoparticles scalable production lithium-ion battery
原文传递
Recent progress on Ge oxide anode materials for lithium-ion batteries 被引量:2
8
作者 Wei Wei Jianlong Xu +2 位作者 Maotian Xu Shiying Zhang Lin Guo 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第5期515-525,共11页
1 Introduction As environmental pollution continues to worsen,governments are increasing their efforts to develop green transport vehicles,such as electric vehicles and hybrid cars.
关键词 Ge Li Recent progress on Ge oxide anode materials for lithium-ion batteries Figure
原文传递
Metal Oxide/graphene composite anode materials for lithium-ion batteries
9
作者 LIANG JunFei ZHOU Jing GUO Lin 《Science Foundation in China》 CAS 2013年第1期59-72,共14页
Metal oxides, such as SnO2, Fe2O3, Fe3O4, CoO, Co3O4, NiO, CuO, Cu2O, MnO, Mn3O4, MnO2. etc. , are promising anode materi- als for lithium-ion batteries (LIBs) due to their high capacity and safety characteristics. ... Metal oxides, such as SnO2, Fe2O3, Fe3O4, CoO, Co3O4, NiO, CuO, Cu2O, MnO, Mn3O4, MnO2. etc. , are promising anode materi- als for lithium-ion batteries (LIBs) due to their high capacity and safety characteristics. However, the commercial utility of metal oxide anodes has been hindered to date by their poor cycling per- formance. Recent study shows that metal oxide/ graphene composites show fascinating cycling per- formance as anode materials for lABs. In this re- view, we summarize the state of research on prepa- ration of metal oxide/graphene composites and their I.i storage performance. The prospects and future challenges of metal oxide/graphene compos- ites anode materials for lABs are also discussed. 展开更多
关键词 Metal oxides GRAPHENE Anode mate-rials I.ithium-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部