期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究 被引量:1
1
作者 侯滨朋 淦作亮 +3 位作者 雷雪玲 钟淑英 徐波 欧阳楚英 《物理学报》 SCIE EI CAS CSCD 北大核心 2019年第12期297-310,共14页
采用第一性原理,研究了不同浓度的氮掺杂石墨烯还原氧分子的机理.结果表明,掺杂氮原子以后,氧分子的吸附能增大,获得的电荷增多,O-O键长变长,说明氮掺杂石墨烯增强了对氧分子的还原能力.进一步分析发现,氧分子吸附之后,氮原子和氧分子... 采用第一性原理,研究了不同浓度的氮掺杂石墨烯还原氧分子的机理.结果表明,掺杂氮原子以后,氧分子的吸附能增大,获得的电荷增多,O-O键长变长,说明氮掺杂石墨烯增强了对氧分子的还原能力.进一步分析发现,氧分子吸附之后,氮原子和氧分子均从碳原子上获得电荷,氮原子同时也向氧分子转移电荷,从而使氧分子与基底的相互作用增强.另外,通过对比不同浓度的氮原子掺杂,发现3.13 at%的氮原子掺杂比例对氧分子的还原性能最好. 展开更多
关键词 锂-空电池 氮掺杂石墨烯 氧分子吸附 氧还原机理 第一性原理
下载PDF
α-MnO_2 nanoneedle-based hollow microspheres coated with Pd nanoparticles as a novel catalyst for rechargeable lithium-air batteries 被引量:3
2
作者 张明 徐强 +3 位作者 桑林 丁飞 刘兴江 焦丽芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期164-170,共7页
The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd na... The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA&#183;h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery. 展开更多
关键词 lithium-air battery composite catalyst nanoneedle-based hollow microsphere core-shell structure
下载PDF
Effect of Magnetic Field on Properties of AuPt Particles Magneto- electrodeposited on Carbon Paper 被引量:1
3
作者 张锦秋 李达 +3 位作者 陈苗苗 安茂忠 杨培霞 王鹏 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期704-710,I0004,共8页
AuPt nano particles are bi-functional catalysts for Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER) that were taken place on air electrodes in lithium air batteries. Magnetic field has been app... AuPt nano particles are bi-functional catalysts for Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER) that were taken place on air electrodes in lithium air batteries. Magnetic field has been applied during electrodeposition for the preparation of AuPt particles. With the increase of the magnetic flux density under constant current density, the grain size decreases from - 1μm to 200nm and the activity of the AuPt catalyst increases. The magnetic field oriented vertical to the electric field has a promotion effect on increasing the catalytic ability of AuPt/carbon electrode. By pulse plating, the grain size decreases to about 100nm. By adjusting parameters of the electric field and the magnetic field, controllable in-situ preparation of AuPt catalyst with various morphology and catalytic activity could be achieved. 展开更多
关键词 Magneto-electrodeposition CATALYST Lithium-air battery Air electrode Pulse plating
下载PDF
Preparation and electrochemical performance of hollow-spherical polypyrrole/V_2O_5 composite
4
作者 王远洪 刘恒 +3 位作者 朱丁 郭再萍 刘华坤 窦诗学 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1303-1308,共6页
In order to improve the lower practical capacity and bad cyclability of crystalline V2O5(c-V2O5),the vanadium oxide(V2O5) and polypyrrole(PPy) hybrid with hollow-spherical(HS) structure was studied.HS nanocomp... In order to improve the lower practical capacity and bad cyclability of crystalline V2O5(c-V2O5),the vanadium oxide(V2O5) and polypyrrole(PPy) hybrid with hollow-spherical(HS) structure was studied.HS nanocomposite comprised of conductive polypyrrole and vanadium pentoxide(PPy/V2O5) was synthesized by polymerization of pyrrole monomer(Py) in the hollow-microspherical V2O5 host.This novel hybrid was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and tested as the cathode material for lithium-ion batteries(LIB) by galvanostatic cell cycling and electrochemical impedance spectroscopy(EIS).The hollow-spherical polypyrrole/vanadium oxide(HS-PPy/V2O5) composites,in which PPy molecules are intercalated between the layers of V2O5,exhibit slight reduced capacity and substantially improve cyclability and electrochemical activity compared with the pure HS-V2O5. 展开更多
关键词 V2O5 hollow microspheres CATHODE lithium-ion batteries
下载PDF
Amorphous CoSnO_3@rGO nanocomposite as an efficient cathode catalyst for long-life Li-O_2 batteries 被引量:1
5
作者 Guanghui Yue Jiandi Liu +3 位作者 Jiangtao Han Donghui Qin Qiang Chen Jianxiong Shao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第12期1951-1959,共9页
An amorphous CoSnO3@rGO nanocomposite fabricated using a surfactant‐assisted assembly method combined with thermal treatment served as a catalyst for non‐aqueous lithium‐oxygen(Li‐O2)batteries.In contrast to the s... An amorphous CoSnO3@rGO nanocomposite fabricated using a surfactant‐assisted assembly method combined with thermal treatment served as a catalyst for non‐aqueous lithium‐oxygen(Li‐O2)batteries.In contrast to the specific surface area of the bare CoSnO3 nanoboxes(104.3 m2 g–1),the specific surface area of the CoSnO3@rGO nanocomposite increased to approximately 195.8 m2 g–1 and the electronic conductivity also improved.The increased specific surface area provided more space for the deposition of Li2O2,while the improved electronic conductivity accelerated the decomposition of Li2O2.Compared to bare CoSnO3,the overpotential reduced by approximately 20 and 60 mV at current densities of 100 and 500 mA g?1 when CoSnO3@rGO was used as the catalyst.A Li‐O2 battery using a CoSnO3@rGO nanocomposite as the cathode catalyst cycled indicated a superior cyclic stability of approximately 130 cycles at a current density of 200 mA g–1 with a limited capacity of 1000 mAh g–1,which is 25 cycles more than that of the bare amorphous CoSnO3 nanoboxes. 展开更多
关键词 Amorphous CoSnO3 nanoboxe NANOCOMPOSITE Li‐O2 battery Cathode catalyst
下载PDF
Solvation structure and dynamics of Li and LiO_(2)and their transformation in non-aqueous organic electrolyte solvents from first-principles simulations
6
作者 Behnaz Rahmani Didar a Axel Groß 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2850-2857,共8页
Density functional theory calculations together with ab initio molecular dynamics(AIMD)simulations have been used to study the solvation,diffusion and transformation of Li^(+)and LiO_(2)upon O_(2)reduction in three or... Density functional theory calculations together with ab initio molecular dynamics(AIMD)simulations have been used to study the solvation,diffusion and transformation of Li^(+)and LiO_(2)upon O_(2)reduction in three organic electrolytes.These processes are critical for the performance of Li-air batteries.Apart from studying the structure of the solvation shells in detail,AIMD simulations have been used to derive the diffusivity and together with the Blue Moon ensemble approach to explore LiO_(2)formation from Li^(+)and O_(2)−and the subsequent disproportionation of 2LiO_(2)into Li_(2)O_(2)+O_(2).By comparing the results of the simulations to gas phase calculations,the impact of electrolytes on these reactions is assessed which turns out to be more pronounced for the ionic species involved in these reactions. 展开更多
关键词 Li-air batteries Li oxide Oxygen reduction Density functional theory Ab initio molecular dynamics SOLVATION DIFFUSIVITY DISPROPORTIONATION
下载PDF
Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method 被引量:10
7
作者 Xin He Jun Wang Richard Kloepsch Steffen Krueger Haiping Jia Haidong Liu Britta Vortmann Jie Li 《Nano Research》 SCIE EI CAS CSCD 2014年第1期110-118,共9页
A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCI flux. Characterization by X-ray diffraction and scanning electro... A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCI flux. Characterization by X-ray diffraction and scanning electron microscopy confirmed its structure and proved that the as-prepared powder is constituted of small, homogenously sized hollow spheres (1-1.5 μm). The material exhibited enhanced rate capability and high first cycle efficiency due to the good dispersion of secondary particles. Galvanostatic cycling at different temperatures (20, 40, and 60 ℃) and a current rate of 2 C (500 mA.g-1) showed no significant capacity fade. 展开更多
关键词 Li-rich cathode nano hollow sphere molten salt synthesis electrochemicalperformance lithium ion batteries
原文传递
Rational synthesis of SnS_2@C hollow microspheres with superior stability for lithium-ion batteries 被引量:4
8
作者 Hulin Yang Yanhui Su +5 位作者 Lin Ding Jiande Lin Ting Zhu Shuquan Liang Anqiang Pan Guozhong Cao 《Science China Materials》 SCIE EI CSCD 2017年第10期955-962,共8页
Tin-based nanomaterials have been extensively explored as high-capacity anode materials for lithium ion batteries(LIBs). However,the large volume changes upon repeated cycling always cause the pulverization of the e... Tin-based nanomaterials have been extensively explored as high-capacity anode materials for lithium ion batteries(LIBs). However,the large volume changes upon repeated cycling always cause the pulverization of the electrode materials. Herein,we report the fabrication of uniform SnS_2@C hollow microspheres from hydrothermally prepared SnO_2@C hollow microspheres by a solid-state sulfurization process. The as-prepared hollow SnS_2@C microspheres with unique carbon shell,as electrodes in LIBs,exhibit high reversible capacity of 814 mA h g^(-1) at a current density of 100 mA g^(-1),good cycling performance(783 mA h g^(-1) for 200 cycles maintained with an average degradation rate of 0.02% per cycle) and remarkable rate capability(reversible capabilities of 433 mA h g^(-1)at 2C). The hollow space could serve as extra space for volume expansion during the charge-discharge cycling,while the carbon shell can ensure the structural integrity of the microspheres. The preeminent electrochemical performances of the SnS_2@C electrodes demonstrate their promising application as anode materials in the next-generation LIBs. 展开更多
关键词 tin disulfide hollow microspheres lithium-ion battery anode material carbon coating
原文传递
SnO_2 hollow spheres:Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage 被引量:6
9
作者 YIN YaXia XIN Sen +2 位作者 WAN LiJun LI CongJu GUO YuGuo 《Science China Chemistry》 SCIE EI CAS 2012年第7期1314-1318,共5页
SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and t... SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and transmission electron microscopy show that the as-obtained SnO2 hollow spheres have a wall thickness of about 50 nm,and consist of nanosized SnO2 particles with a mean diameter of about 15 nm.Electrochemical measurements indicate that the SnO2 hollow spheres exhibit improved electrochemical performance in terms of specific capacity and rate capability in comparison with commercial SnO2 when used as anode materials for lithium-ion batteries.The enhanced performance may be attributed to the spherical and hollow structure,as well as the building blocks of SnO2 nanoparticles. 展开更多
关键词 tin dioxide hollow spheres nanoparticles lithium-ion batteries anode materials
原文传递
In situ construction of amorphous hierarchical iron oxyhydroxide nanotubes via selective dissolution-regrowth strategy for enhanced lithium storage
10
作者 Fangyu Xiong Fan Lv +5 位作者 Chen Tang Pengfei Zhang Shuangshuang Tan Qinyou An Shaojun Guo Liqiang Mai 《Science China Materials》 SCIE EI CSCD 2020年第10期1993-2001,共9页
The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate... The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate capability and cyclability.Rational regulations of metal oxides/oxyhydroxides with hollow geometry and disordered atomic frameworks represent efficient ways to improve their electrochemical properties.Herein,we propose a fast alkalietching method to realize the in-situ fabrication of iron oxyhydroxide with one-dimensional(1D)hierarchical hollow nanostructure and amorphous atomic structure from the iron vanadate nanowires.Benefiting from the improved electron/ion kinetics and efficient buffer ability for the volumetric change during the electro-cycles both in nanoscale and atomic level,the graphene-modified amorphous hierarchical FeOOH nanotubes(FeOOH-NTs)display high rate capability(~650 mA h g^−1 at 2000 mA g^−1)and superior long-term cycling stability(463 mA h g^−1 after 1800 cycles),which represents the best cycling performance among the reported FeOOH-based materials.More importantly,the selective dissolutionregrowth mechanism is demonstrated based on the time tracking of the whole transition process,in which the dissolution of FeVO4 and the in-situ selective re-nucleation of FeOOH during the formation of FeOOH-NTs play the key roles.The present strategy is also a general method to prepare various metal(such as Fe,Mn,Co,and Cu)oxides/oxyhydroxides with 1D hierarchical nanostructures. 展开更多
关键词 selective dissolution-regrowth iron oxyhydroxide hierarchical nanotube lithium-ion battery anode material
原文传递
Hollow and hierarchical Na_2Li_2Ti_6O_(14) microspheres with high electrochemical performance as anode material for lithium-ion battery 被引量:1
11
作者 范姗姗 仲华 +3 位作者 于海涛 娄明 谢颖 朱彦荣 《Science China Materials》 SCIE EI CSCD 2017年第5期427-437,共11页
Relying on a solvent thermal method, spherical Na2Li2Ti6O14 was synthesized. All samples prepared by this method are hollow and hierarchical structures with the size of about 2-3 μtm, which are assembled by many prim... Relying on a solvent thermal method, spherical Na2Li2Ti6O14 was synthesized. All samples prepared by this method are hollow and hierarchical structures with the size of about 2-3 μtm, which are assembled by many primary nanoparticles (-300nm). Particle morphology analysis shows that with the increase of temperature, the porosity increases and the hollow structure becomes more obvious. Na2Li2Ti6Ol4 obtained at 800℃ exhibits the best electro- chemical performance among all samples. Charge-discharge results show that Na2Li2Ti6O14 prepared at 800℃ can delivers a reversible capacity of 220.1, 181.7, 161.6, 144.2, 118.1 and 97.2 mA h g-1 at 50, 140, 280, 560, 1400, 2800 mA g-1. How- ever, Na2Li2Ti6O4-bulk only delivers a reversible capacity of 187, 125.3, 108.3, 88.7, 69.2 and 54.8 mA h g-1 at the same current densities. The high electrochemical performances of the as-prepared materials can be attributed to the distinctive hollow and hierarchical spheres, which could effectively reduce the diffusion distance of Li ions, increase the con- tact area between electrodes and electrolyte, and buffer the volume changes during Li ion intercalation/deintercalation processes. 展开更多
关键词 Na2Li2Ti6O14 hollow structure anode material elec-trochemical performance lithium ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部