Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block...Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block to globular structure andβ phase distributes more widely in the periphery ofαphase when the electromagnetic stirring voltage is higher than 110 V.The mechanical properties are increased significantly with the increasing electromagnetic stirring.The tensile strength is improved from 172 to 195 MPa,and the elongation is increased from 10.65%to 25.75%.展开更多
We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimension...We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierar- chical self-supported nanostructures are composed of one-dimensional (1D) ZnCo204 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo204 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo204 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (-900 mA.h.g-1 at a rate of 45 mA.h.g-1) for Li ion battery electrodes.展开更多
基金Project(2009AA03Z525)supported by the National High-tech Research and Development Program of ChinaProject(NCET-08-0080)supported by the Program of New Century Excellent Talents of the Ministry of Education of ChinaProject(20082172)supported by the Natural Science Foundation of Liaoning Province,China
文摘Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block to globular structure andβ phase distributes more widely in the periphery ofαphase when the electromagnetic stirring voltage is higher than 110 V.The mechanical properties are increased significantly with the increasing electromagnetic stirring.The tensile strength is improved from 172 to 195 MPa,and the elongation is increased from 10.65%to 25.75%.
文摘We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierar- chical self-supported nanostructures are composed of one-dimensional (1D) ZnCo204 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo204 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo204 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (-900 mA.h.g-1 at a rate of 45 mA.h.g-1) for Li ion battery electrodes.