An experimental investigation is performed on side wall deformation at the pendant convective pass (PCP) in a 300 MW and a 600 MW utility boiler. The temperature distributions are measured on the side wall areas of th...An experimental investigation is performed on side wall deformation at the pendant convective pass (PCP) in a 300 MW and a 600 MW utility boiler. The temperature distributions are measured on the side wall areas of the water-cooled wall, the PCP and the horizontal convective pass (HCP) in the two utility boilers. These experiments show that there are great temperature differences in the side wall areas during the startup process in both utility boilers. These temperature differences can reach 80~150 °C with the side wall temperature in the PCP area higher than those in the water-cooled wall and the HCP. The highest temperature in the PCP is close to the flue gas side temperature at the same position in the horizontal flue gas pass. Thermal stress analyses are conducted in the side wall areas in the water-cooled wall, the PCP and the HCP with the software ANSYS. The results show that, at great temperature differences, the PCP side wall undergoes negative thermal stresses that exceed the yield strength causing deformation in the PCP side wall.展开更多
The furnace process is very important in boiler operation,and furnace pressure works as an important parameter in furnace process.Therefore,there is a need to analyze and monitor the pressure signal in furnace.However...The furnace process is very important in boiler operation,and furnace pressure works as an important parameter in furnace process.Therefore,there is a need to analyze and monitor the pressure signal in furnace.However,little work has been conducted on the relationship with the pressure sequence and boiler’s load under different working conditions.Since pressure sequence contains complex information,it demands feature extraction methods from multi-aspect consideration.In this paper,fuzzy c-means analysis method based on weighted validity index(VFCM)has been proposed for the working condition classification based on feature extraction.To deal with the fluctuating and time-varying pressure sequence,feature extraction is taken as nonlinear analysis based on entropy theory.Three kinds of entropy values,extracted from pressure sequence in time-frequency domain,are studied as the clustering objects for work condition classification.Weighted validity index,taking the close and separation degree into consideration,is calculated on the base of Silhouette index and Krzanowski-Lai index to obtain the optimal clustering number.Each time FCM runs,the weighted validity index evaluates the clustering result and the optimal clustering number will be obtained when it reaches the maximum value.Four datasets from UCI Machine Learning Repository are presented to certify the effectiveness in VFCM.Pressure sequences got from a 300 MW boiler are then taken for case study.The result of the pressure sequence case study with an error rate of 0.5332%shows the valuable information on boiler’s load and pressure sequence in furnace.The relationship between boiler’s load and entropy values extracted from pressure sequence is proposed.Moreover,the method can be considered to be a reference method for data mining in other fluctuating and time-varying sequences.展开更多
基金supported by Program for Changjiang Scholars and Innovative Research Team in University (No. PCSIRT0720)the Overseas Returnee Scholar Foundation of North China Electric Power University, China
文摘An experimental investigation is performed on side wall deformation at the pendant convective pass (PCP) in a 300 MW and a 600 MW utility boiler. The temperature distributions are measured on the side wall areas of the water-cooled wall, the PCP and the horizontal convective pass (HCP) in the two utility boilers. These experiments show that there are great temperature differences in the side wall areas during the startup process in both utility boilers. These temperature differences can reach 80~150 °C with the side wall temperature in the PCP area higher than those in the water-cooled wall and the HCP. The highest temperature in the PCP is close to the flue gas side temperature at the same position in the horizontal flue gas pass. Thermal stress analyses are conducted in the side wall areas in the water-cooled wall, the PCP and the HCP with the software ANSYS. The results show that, at great temperature differences, the PCP side wall undergoes negative thermal stresses that exceed the yield strength causing deformation in the PCP side wall.
基金supported by the National Natural Science Foundation of China(Grant No.51176030)Jiangsu Science and Technology Department(Grant No.BY2015070-17)
文摘The furnace process is very important in boiler operation,and furnace pressure works as an important parameter in furnace process.Therefore,there is a need to analyze and monitor the pressure signal in furnace.However,little work has been conducted on the relationship with the pressure sequence and boiler’s load under different working conditions.Since pressure sequence contains complex information,it demands feature extraction methods from multi-aspect consideration.In this paper,fuzzy c-means analysis method based on weighted validity index(VFCM)has been proposed for the working condition classification based on feature extraction.To deal with the fluctuating and time-varying pressure sequence,feature extraction is taken as nonlinear analysis based on entropy theory.Three kinds of entropy values,extracted from pressure sequence in time-frequency domain,are studied as the clustering objects for work condition classification.Weighted validity index,taking the close and separation degree into consideration,is calculated on the base of Silhouette index and Krzanowski-Lai index to obtain the optimal clustering number.Each time FCM runs,the weighted validity index evaluates the clustering result and the optimal clustering number will be obtained when it reaches the maximum value.Four datasets from UCI Machine Learning Repository are presented to certify the effectiveness in VFCM.Pressure sequences got from a 300 MW boiler are then taken for case study.The result of the pressure sequence case study with an error rate of 0.5332%shows the valuable information on boiler’s load and pressure sequence in furnace.The relationship between boiler’s load and entropy values extracted from pressure sequence is proposed.Moreover,the method can be considered to be a reference method for data mining in other fluctuating and time-varying sequences.