Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coat...Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.展开更多
Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratch...Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratched and then exposed to the neutral salt spray(NSS) chamber for different time. The microstructure and chemical compositions of the scratches were studied using SEM and EDS. And the non-scratched coated samples were compared. The self-healing mechanism of the composite coatings was discussed. The results show that during corrosion, the self-healing ions in composite coatings dissolve, diffuse and transfer to the scratches or the defects, and then recombine with Zn2+ to form insoluble compound, which deposits and covers the exposed zinc. The corrosion products on the scratches contain silicon, phosphorous, oxygen, chloride and zinc, and they are compact, fine, needle and flake, effectively inhibiting the corrosion formation and expansion of the exposed zinc layer. The composite coatings have good self-healing ability.展开更多
基金Project(51571134)supported by the National Natural Science Foundation of ChinaProject(2014TDJH104)supported by the SDUST Research Fund+1 种基金the Joint Innovative Centre for Safe and Effective Mining Technology and Equipment of Coal Resources,Shandong Province,ChinaProject(cstc2012jj A50034)supported by the Natural Science Foundation of Chongqing,China
文摘Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.
基金Project(2012J05099)supported by the Natural Science Foundation of Fujian Province,ChinaProject(YKJ10021R)supported by the Scientific Research Project of Xiamen University of Technology
文摘Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratched and then exposed to the neutral salt spray(NSS) chamber for different time. The microstructure and chemical compositions of the scratches were studied using SEM and EDS. And the non-scratched coated samples were compared. The self-healing mechanism of the composite coatings was discussed. The results show that during corrosion, the self-healing ions in composite coatings dissolve, diffuse and transfer to the scratches or the defects, and then recombine with Zn2+ to form insoluble compound, which deposits and covers the exposed zinc. The corrosion products on the scratches contain silicon, phosphorous, oxygen, chloride and zinc, and they are compact, fine, needle and flake, effectively inhibiting the corrosion formation and expansion of the exposed zinc layer. The composite coatings have good self-healing ability.