Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yield...Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yields of S. sarmentosum Bunge, S. bulbiferum Makino, and S. emarginatum Migo decreased with increasing Zn concentration in the solution, while shoot and root yields of S. alfredii increased when Zn concentration was ≤80 mg·L -1. At 80 mg·L -1 Zn, Zn concentration in shoots of S. alfredii reached 19.09 mg·g -1. S. alfredii was also more efficient in Zn translocation from roots to shoots, while Zn concentration in shoots was much higher than in roots. However, this was not the case for the other three species. The results showed that S. alfredii is a Zn hyperaccumulator and could be useful for the phytoremediation of Zn-contaminated soils.展开更多
Sedum alfredii Hance has been identified as a new Zn-hyperaccumulator native to China. In this study, responses and metal accumulation of S alfredii were examined under Zn/Cd complex polluted conditions. The results s...Sedum alfredii Hance has been identified as a new Zn-hyperaccumulator native to China. In this study, responses and metal accumulation of S alfredii were examined under Zn/Cd complex polluted conditions. The results showed that optimal growth of S alfredii in terms of the maximum dry matter yield was observed at Zn/Cd complex level of 500/100 mumol/L. Plant cadmium (Cd) or zinc (Zn) concentrations increased with increasing Cd or Zn supply. During the 20 d treatment, the highest Cd concentration in the leaves reached 12.1 g/kg at Zn/Cd level of 50/400 mumol/L and that of Zn in the stems was 23.2 g/kg at Zn/Cd level of 1000/50 mumol/L. The distribution of Cd in different plant parts decreased in the order: leaf > stem greater than or equal to root, whereas that of Zn was: stem > leaf greater than or equal to root. The accumulation of Cd and Zn in the shoots and roots of S. alfredii increased with the increasing of Zn/Cd supply levels, peaked at Zn/Cd levels of 250/400 and 500/100 mumol/L, respectively. The highest Cd and Zn uptake by the shoots was approximately 5 and 11 mg/plant, and was over 20 and 10 times higher than those in the roots, respectively. Zn supply at levels less than or equal to 500 mumol/L increased plant Cd concentrations, whereas high Zn supply decreased root Cd but did not affect leaf Cd concentrations in S alfredii Low Cd supply increased Zn concentration in the leaves, but Cd supply higher than 50 mumol/L considerably reduced root Zn concentrations, especially at low Zn level. These results indicate that S. alfredii can tolerate high Zn/Cd complex levels and has an extraordinary ability to hyperaccumulate not only Zn but also Cd. It could provide a new valuable plant material for understanding the mechanisms responsible for co-hyperaccumulation of Zn and Cd as well as for phytoremediation of the Cd/Zn complex polluted soils.展开更多
[Objective] The aim was to study the effect of the content of copper and zinc on in medium the vitamin E accumulation in wheat embryo-dreived callus.[Method] The mathematical models were established to describe the gr...[Objective] The aim was to study the effect of the content of copper and zinc on in medium the vitamin E accumulation in wheat embryo-dreived callus.[Method] The mathematical models were established to describe the growth kinetics and the vitamin E accumulation in wheat embryo callus cells.With the aim of getting the highest accumulation of the secondary metabolite Vitamin E,the optimal combination of copper and zinc in medium was confirmed by testing.[Result] The results showed that the production of vitamin E in B5 medium reached the highest value with 2.0 mg/mL ZnSO4·7H2O and 0.1 mg/mL CuSO4·5H2O.The fitting degrees of kinetic models of vitamin E accumulation and cell growth were 97.53% and 95.60%,respectively,which indicated good nonlinear relationships.[Conclusion] Both copper and zinc could affect the accumulation of vitamin E in wheat germ callus,and Copper showed more prominent effect than Zn.Synergism existed in low copper and zinc concentration,and the inhibitive effect enhanced with the increase of the concentrations.展开更多
Using pot experiment to study the effect of new fertilizer ammonium polyphosphate on plant growth and uptake of phosphorus and zinc in corn seedlings. The results showed that under the conditions of equal phosphate fe...Using pot experiment to study the effect of new fertilizer ammonium polyphosphate on plant growth and uptake of phosphorus and zinc in corn seedlings. The results showed that under the conditions of equal phosphate fertilizer application, ammonium polyphosphate added to phosphate fertilizer could significantly improve the plant height and stem diameter of corn seedlings after sowed for 60 days, while improved biomass of corn overground part and roots and root shoot ratio. When the ratio of ammonium polyphosphate and diammonium phosphate was 2:1 (available phosphorus ratio), the effect was the best. Ammonium polyphosphate had little effect on the phosphorus content of overground part of corn seedlings, but increased the phosphorus cumulant. In addition, ammonium polyphosphate applica- tion significantly improved the zinc concentration and zinc cumulant of corn over- ground part and roots. The results showed that ammonium polyphosphate had bet- ter bioavailability, meanwhile promoted the absorption of microelement zinc in crops.展开更多
This study compared the accumulation of Zn2+and Cu2+in the ovaries and ova of loaches under different concentrations of Zn2+(1.00, 2.50 and 5.00 mg/L respectively) and Cu2+(0.10, 0.25 and 0.50 mg/L respectively). The ...This study compared the accumulation of Zn2+and Cu2+in the ovaries and ova of loaches under different concentrations of Zn2+(1.00, 2.50 and 5.00 mg/L respectively) and Cu2+(0.10, 0.25 and 0.50 mg/L respectively). The results showed that both Zn2+and Cu2+accumulated in the ovaries, and that the relationship between accumulation and time was linear over 20 days of exposure. The accumulation of the metals in ovaries was closely related to the concentration of exposure in the solutions(P<0.05), and was obviously affected by the time and doses. However, the Cu2+concentration was significantly higher than Zn2+(P<0.05). The development level of ova in the ovaries also correlated with the concentration and exposure period in the Zn2+and Cu2+solutions.展开更多
A field experiment was conducted to investigate the effects of soil amendments(lime,nano-Si foliar solution and used diatomite) on the growth and metal uptake of three maize(Zea mays L.) cultivars grown in a Cd and Zn...A field experiment was conducted to investigate the effects of soil amendments(lime,nano-Si foliar solution and used diatomite) on the growth and metal uptake of three maize(Zea mays L.) cultivars grown in a Cd and Zn-contaminated acidic soil.The addition of lime significantly increased the maize grain yields and decreased the concentrations of Zn and Cd in the grains and shoots of maize when compared with the control.Among the three maize cultivars,Yunshi-5 accumulated the lowest amounts of Cd and Zn in the grain.The concentrations of Zn and Cd in the grain of Yunshi-5 conformed to the Chinese feed standards.These data revealed that a combination of low metal-accumulating maize and chemical fixation could effectively provide a barrier to prevent metals from entering the human food chain.展开更多
Use of ornamental plants for phytoremediation of metal-contaminated soil is a new option. A pot experiment was carried out to assess the effect of application of amendments, i.e., swine manure, salicylic acid (SA) a...Use of ornamental plants for phytoremediation of metal-contaminated soil is a new option. A pot experiment was carried out to assess the effect of application of amendments, i.e., swine manure, salicylic acid (SA) and potassium chloride (KC1), on the growth, uptake and translocation of cadmium (Cd) and zinc (Zn) of ornamental sunflower (Helianthus annuus L.) grown on a contaminated soil. The three amendments increased sunflower height, flower diameter, and biomass. Manure significantly decreased Cd and Zn concentrations in sunflower, and thus decreased the bioaccumulation coefficient (BCF) of Cd and Zn. However, using of KC1 markedly increased Cd concentrations in sunflower and the BCF of Cd. Additionally, both swine manure and KC1 application increased Cd and Zn translocation from root to aboveground part. Swine manure and salicylic acid reduced the Cd/Zn ratios in flower of sunflower, while KC1 significantly increased the Cd/Zn ratios. Correlation analysis demonstrated that the Cd/Zn ratio in the root of sunflower was affected by K/Na ratio in root and soil available potassium (K) concentration. Ornamental sunflower could be grown as an alternative plant in the Cd- and Zn-contaminated soil with KC1 application to get the balance between environmental and economic interests.展开更多
文摘Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yields of S. sarmentosum Bunge, S. bulbiferum Makino, and S. emarginatum Migo decreased with increasing Zn concentration in the solution, while shoot and root yields of S. alfredii increased when Zn concentration was ≤80 mg·L -1. At 80 mg·L -1 Zn, Zn concentration in shoots of S. alfredii reached 19.09 mg·g -1. S. alfredii was also more efficient in Zn translocation from roots to shoots, while Zn concentration in shoots was much higher than in roots. However, this was not the case for the other three species. The results showed that S. alfredii is a Zn hyperaccumulator and could be useful for the phytoremediation of Zn-contaminated soils.
文摘Sedum alfredii Hance has been identified as a new Zn-hyperaccumulator native to China. In this study, responses and metal accumulation of S alfredii were examined under Zn/Cd complex polluted conditions. The results showed that optimal growth of S alfredii in terms of the maximum dry matter yield was observed at Zn/Cd complex level of 500/100 mumol/L. Plant cadmium (Cd) or zinc (Zn) concentrations increased with increasing Cd or Zn supply. During the 20 d treatment, the highest Cd concentration in the leaves reached 12.1 g/kg at Zn/Cd level of 50/400 mumol/L and that of Zn in the stems was 23.2 g/kg at Zn/Cd level of 1000/50 mumol/L. The distribution of Cd in different plant parts decreased in the order: leaf > stem greater than or equal to root, whereas that of Zn was: stem > leaf greater than or equal to root. The accumulation of Cd and Zn in the shoots and roots of S. alfredii increased with the increasing of Zn/Cd supply levels, peaked at Zn/Cd levels of 250/400 and 500/100 mumol/L, respectively. The highest Cd and Zn uptake by the shoots was approximately 5 and 11 mg/plant, and was over 20 and 10 times higher than those in the roots, respectively. Zn supply at levels less than or equal to 500 mumol/L increased plant Cd concentrations, whereas high Zn supply decreased root Cd but did not affect leaf Cd concentrations in S alfredii Low Cd supply increased Zn concentration in the leaves, but Cd supply higher than 50 mumol/L considerably reduced root Zn concentrations, especially at low Zn level. These results indicate that S. alfredii can tolerate high Zn/Cd complex levels and has an extraordinary ability to hyperaccumulate not only Zn but also Cd. It could provide a new valuable plant material for understanding the mechanisms responsible for co-hyperaccumulation of Zn and Cd as well as for phytoremediation of the Cd/Zn complex polluted soils.
文摘[Objective] The aim was to study the effect of the content of copper and zinc on in medium the vitamin E accumulation in wheat embryo-dreived callus.[Method] The mathematical models were established to describe the growth kinetics and the vitamin E accumulation in wheat embryo callus cells.With the aim of getting the highest accumulation of the secondary metabolite Vitamin E,the optimal combination of copper and zinc in medium was confirmed by testing.[Result] The results showed that the production of vitamin E in B5 medium reached the highest value with 2.0 mg/mL ZnSO4·7H2O and 0.1 mg/mL CuSO4·5H2O.The fitting degrees of kinetic models of vitamin E accumulation and cell growth were 97.53% and 95.60%,respectively,which indicated good nonlinear relationships.[Conclusion] Both copper and zinc could affect the accumulation of vitamin E in wheat germ callus,and Copper showed more prominent effect than Zn.Synergism existed in low copper and zinc concentration,and the inhibitive effect enhanced with the increase of the concentrations.
基金Independent Innovation Achievement Transformation Special Project in Shandong Province:Research on Key Technology Of Comprehensive Utilization of Middle and Low Grade Phosphate Rock Resources and Industrialization Demonstration(2013ZHZX2A0904)~~
文摘Using pot experiment to study the effect of new fertilizer ammonium polyphosphate on plant growth and uptake of phosphorus and zinc in corn seedlings. The results showed that under the conditions of equal phosphate fertilizer application, ammonium polyphosphate added to phosphate fertilizer could significantly improve the plant height and stem diameter of corn seedlings after sowed for 60 days, while improved biomass of corn overground part and roots and root shoot ratio. When the ratio of ammonium polyphosphate and diammonium phosphate was 2:1 (available phosphorus ratio), the effect was the best. Ammonium polyphosphate had little effect on the phosphorus content of overground part of corn seedlings, but increased the phosphorus cumulant. In addition, ammonium polyphosphate applica- tion significantly improved the zinc concentration and zinc cumulant of corn over- ground part and roots. The results showed that ammonium polyphosphate had bet- ter bioavailability, meanwhile promoted the absorption of microelement zinc in crops.
基金Natural Science Foundation of Zhejiang(LY12C03006),China
文摘This study compared the accumulation of Zn2+and Cu2+in the ovaries and ova of loaches under different concentrations of Zn2+(1.00, 2.50 and 5.00 mg/L respectively) and Cu2+(0.10, 0.25 and 0.50 mg/L respectively). The results showed that both Zn2+and Cu2+accumulated in the ovaries, and that the relationship between accumulation and time was linear over 20 days of exposure. The accumulation of the metals in ovaries was closely related to the concentration of exposure in the solutions(P<0.05), and was obviously affected by the time and doses. However, the Cu2+concentration was significantly higher than Zn2+(P<0.05). The development level of ova in the ovaries also correlated with the concentration and exposure period in the Zn2+and Cu2+solutions.
基金Supported by the National Natural Science Foundation of China (Nos.40801115 and 41071306)the Science and Technology Planning Project of Guangdong Province,China (Nos.2007A032303001,2009B030802016 and 2010B031800006)
文摘A field experiment was conducted to investigate the effects of soil amendments(lime,nano-Si foliar solution and used diatomite) on the growth and metal uptake of three maize(Zea mays L.) cultivars grown in a Cd and Zn-contaminated acidic soil.The addition of lime significantly increased the maize grain yields and decreased the concentrations of Zn and Cd in the grains and shoots of maize when compared with the control.Among the three maize cultivars,Yunshi-5 accumulated the lowest amounts of Cd and Zn in the grain.The concentrations of Zn and Cd in the grain of Yunshi-5 conformed to the Chinese feed standards.These data revealed that a combination of low metal-accumulating maize and chemical fixation could effectively provide a barrier to prevent metals from entering the human food chain.
基金Supported by the National Natural Science Foundation of China (No.31172034)the National Key Technology R&D Programof China (Nos.2012BAJ24B06 and 2011BAD04B04)
文摘Use of ornamental plants for phytoremediation of metal-contaminated soil is a new option. A pot experiment was carried out to assess the effect of application of amendments, i.e., swine manure, salicylic acid (SA) and potassium chloride (KC1), on the growth, uptake and translocation of cadmium (Cd) and zinc (Zn) of ornamental sunflower (Helianthus annuus L.) grown on a contaminated soil. The three amendments increased sunflower height, flower diameter, and biomass. Manure significantly decreased Cd and Zn concentrations in sunflower, and thus decreased the bioaccumulation coefficient (BCF) of Cd and Zn. However, using of KC1 markedly increased Cd concentrations in sunflower and the BCF of Cd. Additionally, both swine manure and KC1 application increased Cd and Zn translocation from root to aboveground part. Swine manure and salicylic acid reduced the Cd/Zn ratios in flower of sunflower, while KC1 significantly increased the Cd/Zn ratios. Correlation analysis demonstrated that the Cd/Zn ratio in the root of sunflower was affected by K/Na ratio in root and soil available potassium (K) concentration. Ornamental sunflower could be grown as an alternative plant in the Cd- and Zn-contaminated soil with KC1 application to get the balance between environmental and economic interests.