Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coat...Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.展开更多
The formation constants of Co ̄(2+), Ni ̄(2+), Cu ̄(2+) and Zn ̄(2+) complexes with humic acid (HA) and fulvicacid (FA) in red soil were determined by the potentiometric titration method. The constants as a functionof...The formation constants of Co ̄(2+), Ni ̄(2+), Cu ̄(2+) and Zn ̄(2+) complexes with humic acid (HA) and fulvicacid (FA) in red soil were determined by the potentiometric titration method. The constants as a functionof composition of the complexation solutions were obtained by two graphical approaches respectively Theformation constants decreased with increasing concentration of metal in the solution. The results provideunambiguous evidence for the heterogeneity of the function groups of humic substances. The formationconstants of FA were much smaller than those of HA, and the formation constants of Cu ̄(2+) were muchgreater than those of Co ̄(2+) , Ni ̄(2+) and Zn ̄(2+) . The potentiometric titration method for determining formationconstants are also discussed in the article.展开更多
基金Project(51571134)supported by the National Natural Science Foundation of ChinaProject(2014TDJH104)supported by the SDUST Research Fund+1 种基金the Joint Innovative Centre for Safe and Effective Mining Technology and Equipment of Coal Resources,Shandong Province,ChinaProject(cstc2012jj A50034)supported by the Natural Science Foundation of Chongqing,China
文摘Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.
文摘The formation constants of Co ̄(2+), Ni ̄(2+), Cu ̄(2+) and Zn ̄(2+) complexes with humic acid (HA) and fulvicacid (FA) in red soil were determined by the potentiometric titration method. The constants as a functionof composition of the complexation solutions were obtained by two graphical approaches respectively Theformation constants decreased with increasing concentration of metal in the solution. The results provideunambiguous evidence for the heterogeneity of the function groups of humic substances. The formationconstants of FA were much smaller than those of HA, and the formation constants of Cu ̄(2+) were muchgreater than those of Co ̄(2+) , Ni ̄(2+) and Zn ̄(2+) . The potentiometric titration method for determining formationconstants are also discussed in the article.