Al-doped ZnO(AZO) has been used as an electron transport and hole blocking buffer layer in inverted organic solar cells(IOSCs). In this paper, the AZO morphology, optical and structural properties and IOSCs performanc...Al-doped ZnO(AZO) has been used as an electron transport and hole blocking buffer layer in inverted organic solar cells(IOSCs). In this paper, the AZO morphology, optical and structural properties and IOSCs performance are investigated as a function of precursor solution concentration from 0.1 mol/L to 1.0 mol/L. We demonstrate that the device with 0.1 mol/L precursor concentration of AZO buffer layers enhances the short-circuit current and the fill factor of IOSCs simultaneously. The resulting device shows that the power conversion efficiency is improved by 35.6% relative to that of the 1.0 mol/L device, due to the improved surface morphology and transmittance(300–400 nm) of AZO buffer layer.展开更多
基金supported by the National Natural Science Foundation of China(No.61377031)the Scientific Research Foundation of Zhejiang Ocean University(No.Q1444)
文摘Al-doped ZnO(AZO) has been used as an electron transport and hole blocking buffer layer in inverted organic solar cells(IOSCs). In this paper, the AZO morphology, optical and structural properties and IOSCs performance are investigated as a function of precursor solution concentration from 0.1 mol/L to 1.0 mol/L. We demonstrate that the device with 0.1 mol/L precursor concentration of AZO buffer layers enhances the short-circuit current and the fill factor of IOSCs simultaneously. The resulting device shows that the power conversion efficiency is improved by 35.6% relative to that of the 1.0 mol/L device, due to the improved surface morphology and transmittance(300–400 nm) of AZO buffer layer.