The selective removal of arsenic from arsenic-bearing dust containing Pb and Sb in alkaline solution was studied. The influence of Na OH concentration, temperature, leaching time, liquid to solid ratio, and the presen...The selective removal of arsenic from arsenic-bearing dust containing Pb and Sb in alkaline solution was studied. The influence of Na OH concentration, temperature, leaching time, liquid to solid ratio, and the presence of elemental sulfur on the dissolution of As, Sb and Pb in Na OH solution was investigated. The results indicate that the presence of elemental sulfur can effectively prevent leaching of lead and antimony from arsenic. The Sb2O3, As2O3 and Pb5(AsO4)3 OH in the raw material convert to NaSb(OH)6 and PbS in the leaching residue, while arsenic is leached out as As(Ⅲ) or As(Ⅴ) ions in the leaching solution. Arsenic leaching efficiency of 99.84% can be achieved under the optimized conditions, while 97.82% of Sb and 99.97% of Pb remain in the leach residue with the arsenic concentration of less than 0.1%. A novel route is presented for the selective removal of arsenic and potential recycle of lead and antimony from the arsenic-bearing dust leached by Na OH solutions with the addition of elemental sulfur.展开更多
Sodium sulfide leaching of a low-grade jamesonite concentrate in the production of sodium pyroantimoniate through the air oxidation process and the influencing factors on the leaching rate of antimony were investigate...Sodium sulfide leaching of a low-grade jamesonite concentrate in the production of sodium pyroantimoniate through the air oxidation process and the influencing factors on the leaching rate of antimony were investigated. In order to decrease the consumption of sodium sulfide and increase the concentration of antimony in the leaching solution, two-stage leaching of jamesonite concentrate and combination leaching of high-grade stibnite concentrate and jamesonite concentrate were used. The experimental results show that the consumptions of sodium sulfide for the two-stage leaching process and the combination leaching process are decreased by 20% and 60% compared to those of one-stage leaching process respectively. The final concentrations of antimony in the leaching solutions of both processes are above 100g/L.展开更多
The behavior of silver and lead in the selective chlorination leaching process of gold-antimony alloy was analyzed in detail and appropriate recovery methods were developed.A reduction method by adding gold-antimony a...The behavior of silver and lead in the selective chlorination leaching process of gold-antimony alloy was analyzed in detail and appropriate recovery methods were developed.A reduction method by adding gold-antimony alloy powder was adopted to recover silver according to the thermodynamics calculation.The reducing rate of silver can exceed 99%at 80℃for 1.5 h when the dosage of gold-antimony alloy powder is 10%.The dissolution equilibrium curved surfaces of PbSO4 and PbCl2 under different conditions were drawn.The experimental results are well consistent with theoretical analysis that indicate lead may be precipitated in the form of lead chloride.The grade of gold in the residue can be further concentrated to 94.5%after being washed with hot water. These two methods have been applied successfully in the practice.展开更多
The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle ...The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle size on the process were explored.It is found that the recoveries of Sb and Fe reach86.1%and28.8%,respectively,when the reaction conditions are4.0mol/L HCl,900r/min stirring speed at85°C with<0.074mm particle size after50min leaching.XRD analysis indicates that no new solid product forms in the leaching residue and the leaching process can be described by shrinking core model.The leaching of Sb corresponds to diffusion-controlled model at low temperature(15?45°C)and mixed-controlled model at high temperature(45?85°C),and the apparent activation energies are6.91and17.93kJ/mol,respectively.The leaching of Fe corresponds to diffusion-controlled model,and the apparent activation energy is1.99kJ/mol.Three semi-empirical rate equations are obtained to describe the leaching process.展开更多
基金Project(51604303) supported by the National Natural Science Foundation of ChinaProject(2019JJ20031) supported by the Hunan Natural Science Fund for Distinguished Young Scholar,China
文摘The selective removal of arsenic from arsenic-bearing dust containing Pb and Sb in alkaline solution was studied. The influence of Na OH concentration, temperature, leaching time, liquid to solid ratio, and the presence of elemental sulfur on the dissolution of As, Sb and Pb in Na OH solution was investigated. The results indicate that the presence of elemental sulfur can effectively prevent leaching of lead and antimony from arsenic. The Sb2O3, As2O3 and Pb5(AsO4)3 OH in the raw material convert to NaSb(OH)6 and PbS in the leaching residue, while arsenic is leached out as As(Ⅲ) or As(Ⅴ) ions in the leaching solution. Arsenic leaching efficiency of 99.84% can be achieved under the optimized conditions, while 97.82% of Sb and 99.97% of Pb remain in the leach residue with the arsenic concentration of less than 0.1%. A novel route is presented for the selective removal of arsenic and potential recycle of lead and antimony from the arsenic-bearing dust leached by Na OH solutions with the addition of elemental sulfur.
文摘Sodium sulfide leaching of a low-grade jamesonite concentrate in the production of sodium pyroantimoniate through the air oxidation process and the influencing factors on the leaching rate of antimony were investigated. In order to decrease the consumption of sodium sulfide and increase the concentration of antimony in the leaching solution, two-stage leaching of jamesonite concentrate and combination leaching of high-grade stibnite concentrate and jamesonite concentrate were used. The experimental results show that the consumptions of sodium sulfide for the two-stage leaching process and the combination leaching process are decreased by 20% and 60% compared to those of one-stage leaching process respectively. The final concentrations of antimony in the leaching solutions of both processes are above 100g/L.
基金Project(Hunan 2006104)supported by the Key Project Science and Technology Program of Hunan Province of China
文摘The behavior of silver and lead in the selective chlorination leaching process of gold-antimony alloy was analyzed in detail and appropriate recovery methods were developed.A reduction method by adding gold-antimony alloy powder was adopted to recover silver according to the thermodynamics calculation.The reducing rate of silver can exceed 99%at 80℃for 1.5 h when the dosage of gold-antimony alloy powder is 10%.The dissolution equilibrium curved surfaces of PbSO4 and PbCl2 under different conditions were drawn.The experimental results are well consistent with theoretical analysis that indicate lead may be precipitated in the form of lead chloride.The grade of gold in the residue can be further concentrated to 94.5%after being washed with hot water. These two methods have been applied successfully in the practice.
基金Project (51474257) supported by the National Natural Science Foundation of ChinaProject (2015zzts037) supported by the Postgraduate Research and Innovation Projects of Hunan Province,ChinaProject (2015JC3005) supported by the Key Technology Research and Development Program of Hunan Province,China
文摘The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle size on the process were explored.It is found that the recoveries of Sb and Fe reach86.1%and28.8%,respectively,when the reaction conditions are4.0mol/L HCl,900r/min stirring speed at85°C with<0.074mm particle size after50min leaching.XRD analysis indicates that no new solid product forms in the leaching residue and the leaching process can be described by shrinking core model.The leaching of Sb corresponds to diffusion-controlled model at low temperature(15?45°C)and mixed-controlled model at high temperature(45?85°C),and the apparent activation energies are6.91and17.93kJ/mol,respectively.The leaching of Fe corresponds to diffusion-controlled model,and the apparent activation energy is1.99kJ/mol.Three semi-empirical rate equations are obtained to describe the leaching process.