The feasibility of a new method for separating arsenic from arsenic-antimony-bearing dusts using Cu S was put forward,in which Sb was transformed into Sb2O4 and Sb2S3 that stayed in the roasted calcine while As was vo...The feasibility of a new method for separating arsenic from arsenic-antimony-bearing dusts using Cu S was put forward,in which Sb was transformed into Sb2O4 and Sb2S3 that stayed in the roasted calcine while As was volatilized in the form of As4O6.The factors such as roasting temperature and Cu S addition amount were studied using XRD,EPMA and SEM-EDS.Cu S has an active effect on the separation of arsenic due to the destruction of(Sb,As)2 O3 structures in the original dust and the simultaneous release of As in the form of As4O6.At a roasting temperature of 400°C and Cu S addition amount of 130%,the volatilization rates of arsenic and antimony reach 97.80 wt.%and 8.29 wt.%,respectively.Further,the high As volatile matter can be used to prepare ferric arsenate after it is oxidized,with this treatment rendering the vapor harmlessness.展开更多
This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antim...This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antimony-containing phase was reduced into Sb4O6,volatilized into smoke,and finally recovered through the cooling cylinder.The antimony recovery rate increased from 66.00 wt%to 73.81 wt%in temperature range of 650 to 800°C,and decreased with temperature increased further to 900°C due to the reduction of Sb4O6 to the nonvolatile Sb.Similarly,the CO partial pressure also played a double role in this test.Under optimized conditions of roasting temperature of 800°C,CO partial pressure of 7.5 vol%and roasting time of 120 min,98.40 wt%of arsenic removal rate and 80.40 wt%antimony recovery rate could be obtained.In addition,the“As2O3”product could be used for preparing ferric arsenate which realized the harmless treatment of it.展开更多
To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly...To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly ash,due to which most As volatilized and Sb retained in roasted residues in phases of As-Sb-Pb-O and As-Sb-Pb alloy.With the increase of PbO and reductant amounts,the Sb fixation rate increased in the first reduction stage,and further the Sb content in the elemental As obtained from the second reduction stage decreased.After being roasted for 30 min at 550℃ with the addition of 20%activated carbon and 12%PbO in the first reduction stage,the As volatilization rate and Sb fixation rate from the As-Sb fly ash reached 92.86%and 79.38%,respectively.Then through the second reduction of the volatile matters at 650℃,the As and Sb contents in the obtained elemental As reached 99.07 wt%and 0.22 wt%respectively,indicating that the obtained As could be used to prepare high purity As,thereby rendering the As-Sb fly ash recycling.展开更多
The separation of arsenic and antimony from dust with high content of arsenic was conducted via a selective sulfidation roasting process.The factors such as roasting temperature,roasting time,sulfur content and nitrog...The separation of arsenic and antimony from dust with high content of arsenic was conducted via a selective sulfidation roasting process.The factors such as roasting temperature,roasting time,sulfur content and nitrogen flow rate were investigated using XRD,EPMA and SEM-EDS.In a certain range,the sulfur addition has an active effect on the arsenic volatilization because the solid solution phase((Sb,As)2O3)in the dust can be destroyed after the Sb component in it being vulcanized to Sb2S3 and this generated As2O3 continues to volatile.In addition,an amorphization reaction between As2O(3 )and Sb2O(3 )is hindered through the sulfidation of Sb2O3,which is also beneficial to increasing arsenic volatilization rate.The results show that volatilization rates of arsenic and antimony reach 95.36%and only 9.07%,respectively,under the optimum condition of roasting temperature of 350℃,roasting time of 90 min,sulfur content of 22%and N2 flow rate of 70 m L/min.In addition,the antimony in the residues can be reclaimed through a reverberatory process.展开更多
基金Project(2019YFC1907405)supported by the National Key R&D Program of ChinaProjects(52064021,52074136)supported by the National Natural Science Foundation of China+6 种基金Project(20204BCJL23031)supported by the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects,ChinaProject(20202ACB213002)supported by the Jiangxi Provincial Science Fund for Distinguished Young Scholars,ChinaProject(2019KY09)supported by the Merit-based Postdoctoral Research in Jiangxi Province,ChinaProject(JXUSTQJBJ2020004)supported by the Program of Qingjiang Excellent Young TalentsJiangxi University of Science and Technology,ChinaProject(2021ACB204015)supported by the Distinguished Professor Program of Jinggang Scholars in Institutions of Higher LearningNatural Science Foundation of Jiangxi Province,China。
基金Project(51564034)supported by the National Natural Science Foundation for Distinguished Regional Scholars,ChinaProject(2015HA019)supported by the Scientific and Technological Leading Talent Program in Yunnan Province,China.
文摘The feasibility of a new method for separating arsenic from arsenic-antimony-bearing dusts using Cu S was put forward,in which Sb was transformed into Sb2O4 and Sb2S3 that stayed in the roasted calcine while As was volatilized in the form of As4O6.The factors such as roasting temperature and Cu S addition amount were studied using XRD,EPMA and SEM-EDS.Cu S has an active effect on the separation of arsenic due to the destruction of(Sb,As)2 O3 structures in the original dust and the simultaneous release of As in the form of As4O6.At a roasting temperature of 400°C and Cu S addition amount of 130%,the volatilization rates of arsenic and antimony reach 97.80 wt.%and 8.29 wt.%,respectively.Further,the high As volatile matter can be used to prepare ferric arsenate after it is oxidized,with this treatment rendering the vapor harmlessness.
基金Project(51564034)supported by the National Science Fund for Distinguished Regional Scholars,China
文摘This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antimony-containing phase was reduced into Sb4O6,volatilized into smoke,and finally recovered through the cooling cylinder.The antimony recovery rate increased from 66.00 wt%to 73.81 wt%in temperature range of 650 to 800°C,and decreased with temperature increased further to 900°C due to the reduction of Sb4O6 to the nonvolatile Sb.Similarly,the CO partial pressure also played a double role in this test.Under optimized conditions of roasting temperature of 800°C,CO partial pressure of 7.5 vol%and roasting time of 120 min,98.40 wt%of arsenic removal rate and 80.40 wt%antimony recovery rate could be obtained.In addition,the“As2O3”product could be used for preparing ferric arsenate which realized the harmless treatment of it.
基金Project(51874153) supported by the National Natural Science Foundation of ChinaProject(LZB2021003) supported by Fundamental Research Funds for the Central UniversitiesDHU Distinguished Young Professor Program,China。
文摘To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly ash,due to which most As volatilized and Sb retained in roasted residues in phases of As-Sb-Pb-O and As-Sb-Pb alloy.With the increase of PbO and reductant amounts,the Sb fixation rate increased in the first reduction stage,and further the Sb content in the elemental As obtained from the second reduction stage decreased.After being roasted for 30 min at 550℃ with the addition of 20%activated carbon and 12%PbO in the first reduction stage,the As volatilization rate and Sb fixation rate from the As-Sb fly ash reached 92.86%and 79.38%,respectively.Then through the second reduction of the volatile matters at 650℃,the As and Sb contents in the obtained elemental As reached 99.07 wt%and 0.22 wt%respectively,indicating that the obtained As could be used to prepare high purity As,thereby rendering the As-Sb fly ash recycling.
基金Project(51564034)supported by the National Natural Science Fund for Distinguished Regional Scholars,ChinaProject(2015HA019)supported by the Scientific and Technological Leading Talent Program in Yunnan Province,China
文摘The separation of arsenic and antimony from dust with high content of arsenic was conducted via a selective sulfidation roasting process.The factors such as roasting temperature,roasting time,sulfur content and nitrogen flow rate were investigated using XRD,EPMA and SEM-EDS.In a certain range,the sulfur addition has an active effect on the arsenic volatilization because the solid solution phase((Sb,As)2O3)in the dust can be destroyed after the Sb component in it being vulcanized to Sb2S3 and this generated As2O3 continues to volatile.In addition,an amorphization reaction between As2O(3 )and Sb2O(3 )is hindered through the sulfidation of Sb2O3,which is also beneficial to increasing arsenic volatilization rate.The results show that volatilization rates of arsenic and antimony reach 95.36%and only 9.07%,respectively,under the optimum condition of roasting temperature of 350℃,roasting time of 90 min,sulfur content of 22%and N2 flow rate of 70 m L/min.In addition,the antimony in the residues can be reclaimed through a reverberatory process.