The strained SiGe material has been grown by using the newly developed High Vacuum/Rapid Thermal Processing/Chemical Vapor Deposition (HV/RTP/CVD) system.Device quality material is grown by handling process after car...The strained SiGe material has been grown by using the newly developed High Vacuum/Rapid Thermal Processing/Chemical Vapor Deposition (HV/RTP/CVD) system.Device quality material is grown by handling process after careful design. The Ge fraction varies up to 0 25, and the n and p type doping is well controlled,which are both adapted to the fabrication of Heterojunction Bipolar Transistors (HBT). The SiGe HBT structure, namely n Si/i p + i SiGe/n Si structure, has been investigated, with which, the HBTs are fabricated and show good performance. The new system has been proved potential and practicable.展开更多
This paper discusses the design of a 10 Gb/s laser diode driver implemented in SiGe BiCMOS technology. The laser diode driver is composed of an input buffer, a predriver circuit and an output current switch stage. Wit...This paper discusses the design of a 10 Gb/s laser diode driver implemented in SiGe BiCMOS technology. The laser diode driver is composed of an input buffer, a predriver circuit and an output current switch stage. With the current mode logic (CML) structure, the input buffer and the predriver circuit have the capability of transmission and amplification of high speed data. By employing MOS-HBT cascode structure as the output stage, the laser diode driver exhibits very high speed and efficiency working at the 10 Gb/s data rate. The core circuit is operated under a 3. 3 V supply, while the output stage is operated under 5.5 V for sufficient headroom across the laser diode. The chip occupies a die area of 600 μm × 800μm. Measurements on chip show clear electrical eye diagrams over 10 Gb/s, which can well meet the specifications defined by SDH STM64/SONET OC192 and a 10 Gb/s Ethemet eye mask. Under a 5. 5 V supply voltage, the maximum output swing is 3.0 V with a 50 12 load (the corresponding modulation current is 60 mA), and the total power dissipation is 660 mW.展开更多
文摘The strained SiGe material has been grown by using the newly developed High Vacuum/Rapid Thermal Processing/Chemical Vapor Deposition (HV/RTP/CVD) system.Device quality material is grown by handling process after careful design. The Ge fraction varies up to 0 25, and the n and p type doping is well controlled,which are both adapted to the fabrication of Heterojunction Bipolar Transistors (HBT). The SiGe HBT structure, namely n Si/i p + i SiGe/n Si structure, has been investigated, with which, the HBTs are fabricated and show good performance. The new system has been proved potential and practicable.
基金The National High Technology Research and Development Program of China(863 Program)(No.2006AA01Z284)
文摘This paper discusses the design of a 10 Gb/s laser diode driver implemented in SiGe BiCMOS technology. The laser diode driver is composed of an input buffer, a predriver circuit and an output current switch stage. With the current mode logic (CML) structure, the input buffer and the predriver circuit have the capability of transmission and amplification of high speed data. By employing MOS-HBT cascode structure as the output stage, the laser diode driver exhibits very high speed and efficiency working at the 10 Gb/s data rate. The core circuit is operated under a 3. 3 V supply, while the output stage is operated under 5.5 V for sufficient headroom across the laser diode. The chip occupies a die area of 600 μm × 800μm. Measurements on chip show clear electrical eye diagrams over 10 Gb/s, which can well meet the specifications defined by SDH STM64/SONET OC192 and a 10 Gb/s Ethemet eye mask. Under a 5. 5 V supply voltage, the maximum output swing is 3.0 V with a 50 12 load (the corresponding modulation current is 60 mA), and the total power dissipation is 660 mW.