The effects of journal misalignment on a journal bearing caused by an asymmetric rotor structure are presented in this study.A new model considering the asymmetric deflection is applied.Also,the thermo-hydrodynamic of...The effects of journal misalignment on a journal bearing caused by an asymmetric rotor structure are presented in this study.A new model considering the asymmetric deflection is applied.Also,the thermo-hydrodynamic of the oil film in the journal bearing and straightforward elasticity theory are considered in the analysis.Based on the structure stiffness equivalent characteristic,a simple stepped shaft can reflect the entire complex structure model.The existing lubrication model,which does not consider this angle component,is not very precise for journal bearings.Film pressure,misalignment angle,velocity field,oil leakage,and temperature field were calculated and compared in the journal bearing analysis.The results indicate that bearing performances are greatly affected by misalignment caused by the asymmetric structure.A simple stepped shaft can effectively represent a misaligned journal bearing in a rotor-bearing system.展开更多
The space manipulator which has advantages of high dexterity and universality, is used to the space capturing usually. According to the different types of mechanical interfaces of targets, the on orbit capturing opera...The space manipulator which has advantages of high dexterity and universality, is used to the space capturing usually. According to the different types of mechanical interfaces of targets, the on orbit capturing operation includes capturing of cooperative target and capturing of uncooperative target. The performances of the famous large space manipulators named space shuttle remote manipulator system(SRMS), the space station remote manipulator system(SSRMS) and the Europe robotic arm(ERA) are reviewed and studied respectively. Moreover, the space manipulators being developed by China for space station is also surveyed. Based on the performance analysis of the large space manipulators and end-effectors, which are adapted to the construction and daily maintenance for the large space structure such as the space station, the basic requirements of large misalignment tolerance capability, soft capturing capability and hard docking capability for the end-effector of large space manipulator are proposed in this paper. According to these requirements, the capture mechanism and methods that can enable the end-effector to have the capability of misalignment tolerance and soft capturing are presented. The development trend and key technologies of the large space manipulators and the end-effectors are also reviewed.展开更多
The effects of journal misalignment on the transient flow of a finite grooved journal bearing are presented in this study. A new 3D computational fluid dynamics (CFD) analysis method is applied. Also, the quasi-coupli...The effects of journal misalignment on the transient flow of a finite grooved journal bearing are presented in this study. A new 3D computational fluid dynamics (CFD) analysis method is applied. Also, the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearing and rotor dynamics is considered in the analysis. Based on the structured mesh, a new approach for mesh movement is proposed to update the mesh volume when the journal moves during the fluid dynamics simula- tion of an oil film. Existing dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The movement of the journal is obtained by solving the moving equations of the rotor-bearing system with the calculated film pressure as the boundary condition of the load. The data exchange between fluid dynamics and rotor dynamics is realized by data files. Results obtained from the CFD model were consistent with previous experimental results on misaligned journal bearings. Film pressure, oil film force, friction torque, misalignment moment and attitude angle were calculated and compared for mis- aligned and aligned journal bearings. The results indicate that bearing performances are greatly affected by misalignment which is caused by unbalanced excitation, and the CFD method based on the fluid-structure interaction (FSI) technique can effectively predict the transient flow field of a misaligned journal bearing in a rotor-bearing system.展开更多
A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Pe...A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60879002)the Tianjin Support Plan of China(No. 10ZCKFGX03800)
文摘The effects of journal misalignment on a journal bearing caused by an asymmetric rotor structure are presented in this study.A new model considering the asymmetric deflection is applied.Also,the thermo-hydrodynamic of the oil film in the journal bearing and straightforward elasticity theory are considered in the analysis.Based on the structure stiffness equivalent characteristic,a simple stepped shaft can reflect the entire complex structure model.The existing lubrication model,which does not consider this angle component,is not very precise for journal bearings.Film pressure,misalignment angle,velocity field,oil leakage,and temperature field were calculated and compared in the journal bearing analysis.The results indicate that bearing performances are greatly affected by misalignment caused by the asymmetric structure.A simple stepped shaft can effectively represent a misaligned journal bearing in a rotor-bearing system.
基金supported by the National Basic Research Program of China(Grant No.973-2013CB733103)State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2016-MF-05)
文摘The space manipulator which has advantages of high dexterity and universality, is used to the space capturing usually. According to the different types of mechanical interfaces of targets, the on orbit capturing operation includes capturing of cooperative target and capturing of uncooperative target. The performances of the famous large space manipulators named space shuttle remote manipulator system(SRMS), the space station remote manipulator system(SSRMS) and the Europe robotic arm(ERA) are reviewed and studied respectively. Moreover, the space manipulators being developed by China for space station is also surveyed. Based on the performance analysis of the large space manipulators and end-effectors, which are adapted to the construction and daily maintenance for the large space structure such as the space station, the basic requirements of large misalignment tolerance capability, soft capturing capability and hard docking capability for the end-effector of large space manipulator are proposed in this paper. According to these requirements, the capture mechanism and methods that can enable the end-effector to have the capability of misalignment tolerance and soft capturing are presented. The development trend and key technologies of the large space manipulators and the end-effectors are also reviewed.
基金supported by the National High-Tech R&D (863) Program of China (No. 2009AA04Z413)the Natural Science Foundation of Zhejiang Province (No. Y1110109),China
文摘The effects of journal misalignment on the transient flow of a finite grooved journal bearing are presented in this study. A new 3D computational fluid dynamics (CFD) analysis method is applied. Also, the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearing and rotor dynamics is considered in the analysis. Based on the structured mesh, a new approach for mesh movement is proposed to update the mesh volume when the journal moves during the fluid dynamics simula- tion of an oil film. Existing dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The movement of the journal is obtained by solving the moving equations of the rotor-bearing system with the calculated film pressure as the boundary condition of the load. The data exchange between fluid dynamics and rotor dynamics is realized by data files. Results obtained from the CFD model were consistent with previous experimental results on misaligned journal bearings. Film pressure, oil film force, friction torque, misalignment moment and attitude angle were calculated and compared for mis- aligned and aligned journal bearings. The results indicate that bearing performances are greatly affected by misalignment which is caused by unbalanced excitation, and the CFD method based on the fluid-structure interaction (FSI) technique can effectively predict the transient flow field of a misaligned journal bearing in a rotor-bearing system.
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2015CB057400)the National Natural Science Foundation of China(Grant No.11302058)
文摘A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.