期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于虚拟传感技术的工业数据错误诊断方法 被引量:6
1
作者 胡瑾秋 郝笑笑 张来斌 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第3期29-36,共8页
由于传感装置失效导致的工业过程数据错误会严重威胁系统的安全平稳运行。虚拟传感技术能够推断、解释和预测系统的真实行为,实现过程变量观测值的冗余输出。为了提高工业系统的安全性,提出了基于虚拟传感技术的工业过程数据错误诊断方... 由于传感装置失效导致的工业过程数据错误会严重威胁系统的安全平稳运行。虚拟传感技术能够推断、解释和预测系统的真实行为,实现过程变量观测值的冗余输出。为了提高工业系统的安全性,提出了基于虚拟传感技术的工业过程数据错误诊断方法。首先针对系统中的各个观测变量,构建基于高斯过程自回归(GPAR)模型的虚拟传感器,通过监测各虚拟传感器预测残差的波动变化,辨识、区分由于传感器故障导致的观测值错误和由于过程扰动引起的数据异常。一旦检测到过程数据出现错误,隔离发生数据错误的过程变量,并构造基于高斯过程多变量回归(GPMR)模型的虚拟传感器,实现过程数据错误值的修复。最后通过连续搅拌釜式加热器(CSTH)仿真实验与某炼厂闪蒸塔现场应用案例验证了本文所提方法的有效性。 展开更多
关键词 工业过程 错误数据诊断 虚拟传感 传感器故障 过程扰动
下载PDF
Data fusion for fault diagnosis using multi-class Support Vector Machines 被引量:1
2
作者 胡中辉 蔡云泽 +1 位作者 李远贵 许晓鸣 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1030-1039,共10页
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine... Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields. 展开更多
关键词 Data fusion Fault diagnosis Multi-class classification Multi-class Support Vector Machines Diesel engine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部