In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymm...In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.展开更多
A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and e...A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and error analysis method(CREAM) to take into account the characteristics of shipping operations. After the influencing factors are identified, Markov method is used to calculate the values of human reliability. The proposed method does not rely on the involvement of experts in the field of human factor nor depend on historical accidents or human error statistics. It is applied to the case of the crew on board of an ocean going dry bulk carrier. The caculated results agree with the actual case, which verifies the validity of the model.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61101248the Equipment Advance Research Projectof"Twelfth Five-Year"Plan under Grant No.51306040202And this work has been performed in the Project"Advanced Communication Research Program(ACRP)"supported by the Directorate of Research and Development,Defense Science and Technology Agency,Singapore under Grant No.DSOCL04020
文摘In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB046804)National Natural Science Foundation of China(No.51239008)+1 种基金Foundation of State Key Laboratory of Marine Engineering of Shanghai Jiaotong UniversityFoundation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)
文摘A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and error analysis method(CREAM) to take into account the characteristics of shipping operations. After the influencing factors are identified, Markov method is used to calculate the values of human reliability. The proposed method does not rely on the involvement of experts in the field of human factor nor depend on historical accidents or human error statistics. It is applied to the case of the crew on board of an ocean going dry bulk carrier. The caculated results agree with the actual case, which verifies the validity of the model.