期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于锚图分类的在线半监督跨模态哈希
1
作者 秦亮 谢良 +1 位作者 陈盛双 徐海蛟 《计算机科学》 CSCD 北大核心 2023年第6期183-193,共11页
近年来,哈希算法由于其存储成本小、检索速度快的特点,在大规模多媒体数据的高效跨模态检索中受到了广泛关注。现有的跨模态哈希算法大多是有监督和无监督方法,其中有监督方法通常能够获得更好的性能,但在实际应用中要求所有数据都被标... 近年来,哈希算法由于其存储成本小、检索速度快的特点,在大规模多媒体数据的高效跨模态检索中受到了广泛关注。现有的跨模态哈希算法大多是有监督和无监督方法,其中有监督方法通常能够获得更好的性能,但在实际应用中要求所有数据都被标记并不具有可行性。此外,这些方法大多数是离线方法,面对流数据的输入需要付出高额训练成本且十分低效。针对上述问题,提出了一种新的半监督跨模态哈希方法——在线半监督锚图跨模态哈希(Online Semi-supervised Anchor Graph Cross-modal Hashing, OSAGCH),构建了半监督锚图跨模态哈希模型,在只有部分数据有标签的情况下,利用正则化锚图预测数据标签,并通过子空间关系学习哈希函数,一步生成统一的哈希码,同时针对流数据输入的情况对该模型进行了在线化学习,使其能够处理流数据。在公共多模态数据集上进行了实验,结果表明所提方法的性能优于其他现有方法。 展开更多
关键词 跨模态哈希 半监督学习 锚图正则化 在线学习 子空间学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部