期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
一种改进的YOLOv5小目标交通标志检测方法 被引量:2
1
作者 李孟歆 李易营 李松昂 《计算机仿真》 北大核心 2023年第10期152-156,161,共6页
针对实景交通标志检测方法研究中存在小目标识别精度较低、网络模型较大等问题,将一种改进的YOLOv5网络模型用于交通标志检测中。通过削减特征金字塔深度、引入卷积注意力模块优化网络结构,保留小目标信息并增强模型特征提取能力。采用K... 针对实景交通标志检测方法研究中存在小目标识别精度较低、网络模型较大等问题,将一种改进的YOLOv5网络模型用于交通标志检测中。通过削减特征金字塔深度、引入卷积注意力模块优化网络结构,保留小目标信息并增强模型特征提取能力。采用K-means聚类算法确定适用于小目标识别的初始锚框,进一步提高模型检测精度。通过TT100K数据集验证表明,与YOLOv5模型相比,上述方法平均准确率提高3.0%,小目标检测平均精度提高5.0%,且模型大小为原模型的25.1%,保证较高识别能力的同时减少了模型参数量,实验对比结果验证了该方法的有效性。 展开更多
关键词 交通标志识别 特征金字塔 注意力模块 初始锚框优化
下载PDF
改进YOLOv3遥感小目标检测算法 被引量:2
2
作者 许成林 黄宇博 赵舵 《计算机系统应用》 2023年第7期179-187,共9页
针对目前在遥感目标检测领域广泛使用的YOLOv3算法存在对小目标物体的特征表达能力不足,检测效果不好的问题,本文提出一种改进的YOLOv3小目标检测算法.首先,引入全局信息注意力机制并改进特征提取网络和特征金字塔结构,提高模型小目标... 针对目前在遥感目标检测领域广泛使用的YOLOv3算法存在对小目标物体的特征表达能力不足,检测效果不好的问题,本文提出一种改进的YOLOv3小目标检测算法.首先,引入全局信息注意力机制并改进特征提取网络和特征金字塔结构,提高模型小目标特征提取能力和检测能力;其次,对数据集进行单尺度Retinex融合特征增强,提高模型对小目标特征的学习效果;最后,使用自适应锚框优化算法对anchors进行优化,提高anchors和目标的匹配程度.选用遥感数据集RSOD进行实验,本文算法的全类平均精度为92.5%,相比经典YOLOv3算法,提高10.1%,对遥感小目标的检测效果得到明显提升. 展开更多
关键词 小目标检测 YOLOv3 特征增强 锚框优化 深度学习
下载PDF
基于改进YOLO v4的单环刺螠洞口识别方法 被引量:4
3
作者 冯娟 梁翔宇 +2 位作者 曾立华 宋小鹿 周玺兴 《农业机械学报》 EI CAS CSCD 北大核心 2023年第2期265-274,377,共11页
针对养殖池塘内单环刺螠自动采捕和产量预测应用需求,提出一种基于深度学习的单环刺螠洞口识别方法,以适用于自动采捕船的嵌入式设备。该方法通过将YOLO v4的主干网络CSPDarkNet53替换为轻量型网络Mobilenet v2,降低网络参数量,提升检... 针对养殖池塘内单环刺螠自动采捕和产量预测应用需求,提出一种基于深度学习的单环刺螠洞口识别方法,以适用于自动采捕船的嵌入式设备。该方法通过将YOLO v4的主干网络CSPDarkNet53替换为轻量型网络Mobilenet v2,降低网络参数量,提升检测速度,并在此基础上使用深度可分离卷积块代替原网络中Neck和Detection Head部分的普通卷积块,进一步降低模型参数量;选取带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法进行图像增强;利用K-means++算法对数据集进行重新聚类,对获得的新锚点框尺寸进行线性缩放优化,以提高目标检测效果。在嵌入式设备Jetson AGX Xavier上部署训练好的模型,对水下单环刺螠洞口检测的平均精度均值(Mean average precision,mAP)可达92.26%,检测速度为36 f/s,模型内存占用量仅为22.2 MB。实验结果表明,该方法实现了检测速度和精度的平衡,可满足实际应用场景下模型部署在单环刺螠采捕船嵌入式设备的需求。 展开更多
关键词 单环刺螠洞口 目标检测 图像增强 优化 YOLO v4
下载PDF
轻量化煤矸目标检测方法研究 被引量:7
4
作者 杜京义 史志芒 +1 位作者 郝乐 陈瑞 《工矿自动化》 北大核心 2021年第11期119-125,共7页
针对目前基于深度学习的煤矸目标检测方法精度低、实时性差、小目标易漏检等问题,采用轻量化网络、自注意力机制、锚框优化方法对SSD模型进行改进,构建Ghost-SSD模型,进而提出一种轻量化煤矸目标检测方法。Ghost-SSD模型以SSD模型为基... 针对目前基于深度学习的煤矸目标检测方法精度低、实时性差、小目标易漏检等问题,采用轻量化网络、自注意力机制、锚框优化方法对SSD模型进行改进,构建Ghost-SSD模型,进而提出一种轻量化煤矸目标检测方法。Ghost-SSD模型以SSD模型为基础框架,采用GhostNet轻量化特征提取网络代替主体网络层VGG16,以提高煤矸目标检测速度;针对浅层特征图中包含较多背景噪声及语义信息不足问题,引入自注意力模块对浅层特征图进行特征增强,提高对前景区域的关注度,并采用扩张卷积增大浅层特征图的感受野,丰富浅层特征图的语义信息;采用K-means算法对锚框进行聚类,优化锚框尺寸设置,进一步提高煤矸目标检测精度。实验结果表明,基于Ghost-SSD模型进行煤矸目标检测时,平均精度均值较SSD模型提高3.6%,检测速度提高75帧/s,且检测精度与速度均优于Faster-RCNN,Yolov3模型,同时对煤矸小目标具有较好的检测效果。 展开更多
关键词 煤矸分选 煤矸识别 煤矸目标检测 自注意力机制 SSD模型 GhostNet 聚类优化
下载PDF
基于改进YOLO v3模型的奶牛发情行为识别研究 被引量:17
5
作者 王少华 何东健 《农业机械学报》 EI CAS CSCD 北大核心 2021年第7期141-150,共10页
为提高复杂环境下奶牛发情行为识别精度和速度,提出了一种基于改进YOLO v3模型的奶牛发情行为识别方法。针对YOLO v3模型原锚点框尺寸不适用于奶牛数据集的问题,对奶牛数据集进行聚类,并对获得的新锚点框尺寸进行优化;针对因数据集中奶... 为提高复杂环境下奶牛发情行为识别精度和速度,提出了一种基于改进YOLO v3模型的奶牛发情行为识别方法。针对YOLO v3模型原锚点框尺寸不适用于奶牛数据集的问题,对奶牛数据集进行聚类,并对获得的新锚点框尺寸进行优化;针对因数据集中奶牛个体偏大等原因而导致模型识别准确率低的问题,引入DenseBlock结构对YOLO v3模型原特征提取网络进行改进,提高了模型识别性能;将YOLO v3模型原边界框损失函数使用均方差(MSE)作为损失函数度量改为使用FIoU和两框中心距离Dc度量,提出了新的边界框损失函数,使其具有尺度不变性。从96段具有发情爬跨行为的视频片段中各选取50帧图像,根据发情爬跨行为在活动区出现位置的不确定性和活动区光照变化的特点,对图像进行水平翻转、±15°旋转、随机亮度增强(降低)等数据增强操作,用增强后的数据构建训练集和验证集,对改进后的模型进行训练,并依据F1、mAP、准确率P和召回率R指标进行模型优选。在测试集上的试验表明,本文方法模型的识别准确率为99.15%,召回率为97.62%,且处理速度达到31 f/s,能够满足复杂养殖环境、全天候条件下奶牛发情行为的准确、实时识别。 展开更多
关键词 奶牛发情 爬跨行为 YOLO v3 优化 DenseBlock 损失函数优化
下载PDF
基于Nano的YOLOv4行人过街检测算法研究
6
作者 刘博华 《工业控制计算机》 2022年第6期72-73,76,共3页
针对行人过街检测中利用YOLOv4算法应用到Nano嵌入式平台上遇到检测速度慢、精度低的问题,提出一种改进YOLOv4的行人过街检测算法。为了平衡速度与精度,在原YOLOv4进行轻量化改进,对大目标检测网络进行裁减,并在原有的CBL级联下增加两... 针对行人过街检测中利用YOLOv4算法应用到Nano嵌入式平台上遇到检测速度慢、精度低的问题,提出一种改进YOLOv4的行人过街检测算法。为了平衡速度与精度,在原YOLOv4进行轻量化改进,对大目标检测网络进行裁减,并在原有的CBL级联下增加两次反馈网络和池化层,同时通过K-means++算法对训练集进行聚类,得到符合行人特征的最优宽高比和锚框个数,减少了网络训练收敛时间。最后结合TensorRT技术使得检测速度进一步提高,可以更好地适配低算力、小容量的嵌入式平台。通过在实际道路行人数据集上进行的实验表明:优化后mAP衡量精度提升了约5%,在Nano平台中,实现了准确率不低于90%的情况下,检测速度由原来的0.8~1.0fps提升到18~20fps。 展开更多
关键词 行人检测 YOLOv4 轻量化 锚框优化 嵌入式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部