为了进一步提高基于深度学习的船舶目标检测技术的检测精度,在无锚框中心点检测算法基础上,提出一种结合空洞编码器和特征金字塔的改进中心点船舶检测算法。采用Res Ne Xt-50网络对船舶图像进行特征提取,引入基于空洞残差的空洞编码器(...为了进一步提高基于深度学习的船舶目标检测技术的检测精度,在无锚框中心点检测算法基础上,提出一种结合空洞编码器和特征金字塔的改进中心点船舶检测算法。采用Res Ne Xt-50网络对船舶图像进行特征提取,引入基于空洞残差的空洞编码器(DE)增大32倍下采样特征图的感受野,生成覆盖多个目标尺度的特征图,并采用特征金字塔网络(FPN)进行上采样,在上采样过程中融合空洞编码器生成的32倍下采样特征图和原16倍、8倍和4倍下采样特征图,从而提取到更丰富的船舶特征信息,提升船舶检测效果。结果表明,改进算法对不同类型和不同尺度下的船舶检测平均精确率相比原算法具有较明显的提升,相比SSD和YOLOv3算法具有更高的精度优势。展开更多
复杂场景下小目标检测是目标检测领域的研究难点和热点。传统的two-stage和one-stage检测模型都是通过预先设定锚点框与真实目标框的交并比(intersection over union,IoU)阈值来划分正负样本集,同时这组预定义的固定锚点框还用于获取候...复杂场景下小目标检测是目标检测领域的研究难点和热点。传统的two-stage和one-stage检测模型都是通过预先设定锚点框与真实目标框的交并比(intersection over union,IoU)阈值来划分正负样本集,同时这组预定义的固定锚点框还用于获取候选框,进而得到检测结果。然而,在复杂场景下,预先设定的IoU阈值会带来正负样本不均衡问题;针对小尺寸目标(船舶)检测,预定义的锚点框也很难保证覆盖目标的位置和密度,因此限制了检测模型的准确率。为了解决上述问题,提出自适应锚点框(adaptive anchor boxes,AAB)的方法优化目标检测网络,采用基于形状相似度距离的聚类算法生成锚点框,提高目标区域定位技术;采用利用聚类的锚点框计算自适应IoU阈值(adaptive threshold selection,ATS),划分正负样本,保证样本均衡。对复杂场景下的小目标(船舶目标)进行检测,实验结果表明,采用自适应锚点框方法和自适应阈值选择方法的目标检测模型在复杂场景中检测均能提升准确,对比faster R-CNN、FPN、Yolo3和pp-Yolo,融合了上述新方法的模型均提升了检测准确率,分别提升了9.6、2.6、9.8和9.9个百分点。展开更多
SiamRPN算法采用Ln范数损失训练边界框预测,未考虑预测框与真值框间交并比(inersection over union,IoU)的关系,导致准确性不足。针对该问题,提出一种结合IoU损失的SiamRPN目标跟踪改进算法。设计了IoU-smooth L1范数联合优化模块,对候...SiamRPN算法采用Ln范数损失训练边界框预测,未考虑预测框与真值框间交并比(inersection over union,IoU)的关系,导致准确性不足。针对该问题,提出一种结合IoU损失的SiamRPN目标跟踪改进算法。设计了IoU-smooth L1范数联合优化模块,对候选正样本进行IoU损失与smooth L1范数损失的联合优化;依据回归预测结果,用预测框与真值框的IoU作为权重对正样本进行加权分类预测,增加正样本间的区分度,同时确保分类预测与回归预测的关联性。对比实验结果表明:本文所提改进算法能有效提升跟踪性能。展开更多
虹膜定位是虹膜识别系统中不可或缺的环节,针对传统的虹膜定位方法对镜面反射、眨眼等复杂环境下质量差的虹膜图像定位准确率低、计算复杂度高和鲁棒性差等问题,提出了一种基于改进YOLOv3模型的虹膜快速定位方法。针对眼周图像中虹膜内...虹膜定位是虹膜识别系统中不可或缺的环节,针对传统的虹膜定位方法对镜面反射、眨眼等复杂环境下质量差的虹膜图像定位准确率低、计算复杂度高和鲁棒性差等问题,提出了一种基于改进YOLOv3模型的虹膜快速定位方法。针对眼周图像中虹膜内、外圆尺寸变化不大,将YOLOv3网络的多尺度结构改进为双尺度检测;引入了轻量级网络Mobilev3中bneck块来改进特征提取网络,减小模型复杂度;利用K-means++算法对虹膜数据集进行类聚,获得更优的锚点框;模型边框损失函数采用LossGIoU改进原均方差(mean squared error,MSE)损失函数;利用虹膜特有几何特征,将模型矩形预测框更改为圆形预测框。在CASIA-IrisV4数据集验证表明,改进模型定位准确率为96.32%,平均精度均值(mean average precision,mAP)为99.37%,检测速度为49.4帧/s,模型参数减少到4.13×10^(6)。结果表明改进后的模型较小,并且能够快速精准对虹膜区域定位,具有较高鲁棒性,能够满足虹膜实时定位的场景。展开更多
文摘为了进一步提高基于深度学习的船舶目标检测技术的检测精度,在无锚框中心点检测算法基础上,提出一种结合空洞编码器和特征金字塔的改进中心点船舶检测算法。采用Res Ne Xt-50网络对船舶图像进行特征提取,引入基于空洞残差的空洞编码器(DE)增大32倍下采样特征图的感受野,生成覆盖多个目标尺度的特征图,并采用特征金字塔网络(FPN)进行上采样,在上采样过程中融合空洞编码器生成的32倍下采样特征图和原16倍、8倍和4倍下采样特征图,从而提取到更丰富的船舶特征信息,提升船舶检测效果。结果表明,改进算法对不同类型和不同尺度下的船舶检测平均精确率相比原算法具有较明显的提升,相比SSD和YOLOv3算法具有更高的精度优势。
文摘针对养殖池塘内单环刺螠自动采捕和产量预测应用需求,提出一种基于深度学习的单环刺螠洞口识别方法,以适用于自动采捕船的嵌入式设备。该方法通过将YOLO v4的主干网络CSPDarkNet53替换为轻量型网络Mobilenet v2,降低网络参数量,提升检测速度,并在此基础上使用深度可分离卷积块代替原网络中Neck和Detection Head部分的普通卷积块,进一步降低模型参数量;选取带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法进行图像增强;利用K-means++算法对数据集进行重新聚类,对获得的新锚点框尺寸进行线性缩放优化,以提高目标检测效果。在嵌入式设备Jetson AGX Xavier上部署训练好的模型,对水下单环刺螠洞口检测的平均精度均值(Mean average precision,mAP)可达92.26%,检测速度为36 f/s,模型内存占用量仅为22.2 MB。实验结果表明,该方法实现了检测速度和精度的平衡,可满足实际应用场景下模型部署在单环刺螠采捕船嵌入式设备的需求。
文摘深度学习模型中的特征金字塔网络(Feature Pyramid Network,FPN)常被用作合成孔径雷达(Synthetic Aperture Radar,SAR)图像中多目标船舶的检测。针对复杂场景下多目标船舶检测问题,提出了一种基于改进锚点框的FPN模型。首先将特征金字塔模型嵌入传统的RPN(Region Proposal Network)并映射成新的特征空间用于目标检测,然后利用基于形状相似度距离(Shape Similar Distance,SSD)度量的Kmeans聚类算法优化FPN的初始锚点框,并使用SAR船舶数据集测试。实验结果表明,所提算法目标检测精确率达到98.62%,在复杂场景下与YOLO、Faster RCNN、FPN based on VGG/ResNet等模型进行对比,模型准确率提高,整体性能更好。
文摘SiamRPN算法采用Ln范数损失训练边界框预测,未考虑预测框与真值框间交并比(inersection over union,IoU)的关系,导致准确性不足。针对该问题,提出一种结合IoU损失的SiamRPN目标跟踪改进算法。设计了IoU-smooth L1范数联合优化模块,对候选正样本进行IoU损失与smooth L1范数损失的联合优化;依据回归预测结果,用预测框与真值框的IoU作为权重对正样本进行加权分类预测,增加正样本间的区分度,同时确保分类预测与回归预测的关联性。对比实验结果表明:本文所提改进算法能有效提升跟踪性能。
文摘虹膜定位是虹膜识别系统中不可或缺的环节,针对传统的虹膜定位方法对镜面反射、眨眼等复杂环境下质量差的虹膜图像定位准确率低、计算复杂度高和鲁棒性差等问题,提出了一种基于改进YOLOv3模型的虹膜快速定位方法。针对眼周图像中虹膜内、外圆尺寸变化不大,将YOLOv3网络的多尺度结构改进为双尺度检测;引入了轻量级网络Mobilev3中bneck块来改进特征提取网络,减小模型复杂度;利用K-means++算法对虹膜数据集进行类聚,获得更优的锚点框;模型边框损失函数采用LossGIoU改进原均方差(mean squared error,MSE)损失函数;利用虹膜特有几何特征,将模型矩形预测框更改为圆形预测框。在CASIA-IrisV4数据集验证表明,改进模型定位准确率为96.32%,平均精度均值(mean average precision,mAP)为99.37%,检测速度为49.4帧/s,模型参数减少到4.13×10^(6)。结果表明改进后的模型较小,并且能够快速精准对虹膜区域定位,具有较高鲁棒性,能够满足虹膜实时定位的场景。