In this work,we synthesized tin(IV)phosphonate(SnBPMA)and zirconium phosphonate(ZrBPMA)by the reaction of SnCl4·5H2O or ZrOCl2·8H2O with N,N-bis(phosphonomethyl)aminoacetic acid,which was synthesized from a ...In this work,we synthesized tin(IV)phosphonate(SnBPMA)and zirconium phosphonate(ZrBPMA)by the reaction of SnCl4·5H2O or ZrOCl2·8H2O with N,N-bis(phosphonomethyl)aminoacetic acid,which was synthesized from a biomaterial glycine through a Mannich-type reaction.The SnBPMA and ZrBPMA were very efficient heterogeneous catalysts for the dehydration of fructose to produce 5-hydroxymethylfurfural(HMF),and the SnBPMA had higher activity than the ZrBPMA.The effects of solvents,temperature,reaction time,and reactant/solvent weight ratio on the reaction catalyzed by SnBPMA were investigated.It was demonstrated that the yield of HMF could reach 86.5%with 1-ethyl-3-methylimidazolium bromide([Emim]Br)as solvent,and the SnBPMA and SnBPMA/[Emim]Br catalytic system could be reused five times without considerable reduction in catalytic efficiency.Further study indicated that the SnBPMA and ZrBPMA in[Emim]Br were also effective for the dehydration of sucrose and inulin to produce HMF with satisfactory yields.展开更多
基金supported by the National Natural Science Foundation of China(2100313321173234)
文摘In this work,we synthesized tin(IV)phosphonate(SnBPMA)and zirconium phosphonate(ZrBPMA)by the reaction of SnCl4·5H2O or ZrOCl2·8H2O with N,N-bis(phosphonomethyl)aminoacetic acid,which was synthesized from a biomaterial glycine through a Mannich-type reaction.The SnBPMA and ZrBPMA were very efficient heterogeneous catalysts for the dehydration of fructose to produce 5-hydroxymethylfurfural(HMF),and the SnBPMA had higher activity than the ZrBPMA.The effects of solvents,temperature,reaction time,and reactant/solvent weight ratio on the reaction catalyzed by SnBPMA were investigated.It was demonstrated that the yield of HMF could reach 86.5%with 1-ethyl-3-methylimidazolium bromide([Emim]Br)as solvent,and the SnBPMA and SnBPMA/[Emim]Br catalytic system could be reused five times without considerable reduction in catalytic efficiency.Further study indicated that the SnBPMA and ZrBPMA in[Emim]Br were also effective for the dehydration of sucrose and inulin to produce HMF with satisfactory yields.