期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多源遥感数据的锡尔河中下游农田土壤水分反演 被引量:9
1
作者 王浩 罗格平 +4 位作者 王伟胜 PACHIKIN Konstantin 李耀明 郑宏伟 胡伟杰 《自然资源学报》 CSSCI CSCD 北大核心 2019年第12期2717-2731,共15页
机器学习结合多源遥感数据反演土壤水分含量(SMC)是目前SMC研究的热点,因较少考虑温度、蒸散等重要SMC影响因子,反演结果存在一定的不确定性。利用Sentinel-1影像、MODIS产品和SRTM数据,提取雷达后向散射系数等32个SMC影响因子,经相关... 机器学习结合多源遥感数据反演土壤水分含量(SMC)是目前SMC研究的热点,因较少考虑温度、蒸散等重要SMC影响因子,反演结果存在一定的不确定性。利用Sentinel-1影像、MODIS产品和SRTM数据,提取雷达后向散射系数等32个SMC影响因子,经相关分析选择27个显著的SMC影响因子(P<0.05)作为反演因子,并设计三组因子组合。这三组因子组合分别与随机森林、支持向量回归、BP神经网络三种机器学习方法结合,发现基于随机森林结合所有因子的方案,其SMC反演精度最高,该组合均方根误差RMSE为0.039 m^3/m^3,将该方案被用于反演2017年生长季锡尔河流域中下游平原区农田SMC。结果表明:从上部至下部SMC总体呈逐渐增加的态势,但存在显著时空差异,春季和秋季SMC较高而夏季较低。SMC差异主要由土壤质地、热量条件和地表植被状况差异引起。春季平原区下部农田SMC要高于上部,SMC的主控因子是土壤质地和地表植被状况;在夏季,土壤水分的主控因子是热量条件,农田灌溉弥补了热量条件差异对土壤水分的影响,导致空间上平原上部和下部土壤SMC空间差异不显著;秋季SMC的主控因子植被状况抵消地表温度和土壤质地差异对SMC的影响,使得秋季SMC空间差异不显著。本文采用的研究方法在一定程度上克服了因考虑SMC影响因子不足而获取更高SMC精度的限制。 展开更多
关键词 土壤水分含量 机器学习 锡尔河流域中下游 Sentinel-1 MODIS SRTM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部