声学黑洞(Acoustic Black Hole,ABH)效应是弯曲波在楔形结构中传播时波速逐渐减小至零从而不发生反射的现象。由于弯曲波在理想黑洞结构中不发生反射,这就意味着能量被集中在楔形结构的尖端部分,这一现象使得黑洞结构在减振降噪,能量回...声学黑洞(Acoustic Black Hole,ABH)效应是弯曲波在楔形结构中传播时波速逐渐减小至零从而不发生反射的现象。由于弯曲波在理想黑洞结构中不发生反射,这就意味着能量被集中在楔形结构的尖端部分,这一现象使得黑洞结构在减振降噪,能量回收等领域中具有极大的应用潜力。为了对截面呈幂率变化的杆结构进行动力学分析,首先建立相应的物理模型,然后利用小波函数拟合杆振动时的挠度曲线并结合拉格朗日方程建立系统的动力学方程;通过对其进行求解得到系统的振动响应。分析计算结果可知,相较于均匀杆结构,截面呈幂律变化的杆结构能够有效的抑制其振动;进一步比较楔形梁和圆杆的振动响应表明,黑洞结构对两者振动响应的抑制效果相似,但锥形杆的尖端聚能效果要优于楔形梁结构。展开更多
文摘声学黑洞(Acoustic Black Hole,ABH)效应是弯曲波在楔形结构中传播时波速逐渐减小至零从而不发生反射的现象。由于弯曲波在理想黑洞结构中不发生反射,这就意味着能量被集中在楔形结构的尖端部分,这一现象使得黑洞结构在减振降噪,能量回收等领域中具有极大的应用潜力。为了对截面呈幂率变化的杆结构进行动力学分析,首先建立相应的物理模型,然后利用小波函数拟合杆振动时的挠度曲线并结合拉格朗日方程建立系统的动力学方程;通过对其进行求解得到系统的振动响应。分析计算结果可知,相较于均匀杆结构,截面呈幂律变化的杆结构能够有效的抑制其振动;进一步比较楔形梁和圆杆的振动响应表明,黑洞结构对两者振动响应的抑制效果相似,但锥形杆的尖端聚能效果要优于楔形梁结构。