Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correc...Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correction structure. According to the given definition of classical coning motion the residual coning correction error based on the new coning correction structure is derived. On the basis of the new structure the frequency Taylor series method is used for designing a coning correction structure coefficient and then a new coning algorithm is obtained.Two types of error models are defined for the coning algorithm performance evaluation under coning environments and maneuver environments respectively.Simulation results indicate that the maneuver accuracy of the new 4-sample coning algorithm is almost double that of the traditional compressed 4-sample coning algorithm. The new coning algorithm has an improved maneuver performance while maintaining coning performance compared to the traditional compressed coning algorithm.展开更多
To compensate the coning error of Strap-down Inertial Navigation Systems (SINS) under high dynamic angular motion, many rotation vector algorithms have been developed using angle increments information. However, most ...To compensate the coning error of Strap-down Inertial Navigation Systems (SINS) under high dynamic angular motion, many rotation vector algorithms have been developed using angle increments information. However, most SINS use angular rate gyros. Aimed at this problem, 18 algorithms are derived based on analysis of the conventional algorithms, and corresponding coning error expressions are given. At last simulation is made which indicates that the new algorithms have much higher precision.展开更多
基金The National Natural Science Foundation of China(No.51375087)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110039)+2 种基金the Public Science and Technology Research Funds Projects of Ocean(No.201205035)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ12_0097)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1349)
文摘Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correction structure. According to the given definition of classical coning motion the residual coning correction error based on the new coning correction structure is derived. On the basis of the new structure the frequency Taylor series method is used for designing a coning correction structure coefficient and then a new coning algorithm is obtained.Two types of error models are defined for the coning algorithm performance evaluation under coning environments and maneuver environments respectively.Simulation results indicate that the maneuver accuracy of the new 4-sample coning algorithm is almost double that of the traditional compressed 4-sample coning algorithm. The new coning algorithm has an improved maneuver performance while maintaining coning performance compared to the traditional compressed coning algorithm.
文摘To compensate the coning error of Strap-down Inertial Navigation Systems (SINS) under high dynamic angular motion, many rotation vector algorithms have been developed using angle increments information. However, most SINS use angular rate gyros. Aimed at this problem, 18 algorithms are derived based on analysis of the conventional algorithms, and corresponding coning error expressions are given. At last simulation is made which indicates that the new algorithms have much higher precision.