期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于RBF神经网络和MIGA的液压锥阀降噪研究 被引量:3
1
作者 王华伟 周鑫 +1 位作者 王博 胡溧 《机电工程》 CAS 北大核心 2022年第11期1527-1534,共8页
液压锥阀在气液两相流状态下工作时会产生剧烈的噪声,严重影响锥阀的工作性能及其工作环境,针对这一问题,提出了一种基于径向基函数(RBF)神经网络和多岛遗传算法(MIGA)的方法,对液压锥阀的结构参数进行了优化。首先,采用有限元软件分析... 液压锥阀在气液两相流状态下工作时会产生剧烈的噪声,严重影响锥阀的工作性能及其工作环境,针对这一问题,提出了一种基于径向基函数(RBF)神经网络和多岛遗传算法(MIGA)的方法,对液压锥阀的结构参数进行了优化。首先,采用有限元软件分析了影响锥阀流场及声场的结构参数;然后,以阀芯半锥角角度、喉部长度和阀芯入口角度这3个参数为优化变量,以加权平均噪声最小和加权最大噪声最小为优化目标,通过最优拉丁超立方设计方法确定了样本数据;最后,采用了RBF神经网络方法,建立了锥阀结构参数与噪声关系的近似模型,利用多岛遗传算法对近似模型进行了优化;根据得到的最优参数建立了锥阀优化模型,并进行了声学特性分析。研究结果表明:与原模型相比,优化模型的平均噪声降低23.846 dB,最大噪声降低5.092 dB;该结果验证了基于RBF神经网络和MIGA优化方法的有效性,可为液压锥阀的进一步降噪研究提供理论支持。 展开更多
关键词 液压控制 锥阀噪声抑制 径向基函数神经网络 多岛遗传算法 结构参数 声学特性分析 最优拉丁超立方
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部