A systematic study on the structure and electronic properties of gold clusters doped each with one copper atom has been performed using the density functional theory. The average bond lengths in the Aun-1Cu (n ≤ 9)...A systematic study on the structure and electronic properties of gold clusters doped each with one copper atom has been performed using the density functional theory. The average bond lengths in the Aun-1Cu (n ≤ 9) bimetallic clusters are shorter than those in the corresponding pure gold clusters. The ionization potentials of the bimetallic clusters Aun-1Cu (n 〈 9) are larger than those of the corresponding homoatomic gold clusters except for Aus. The energy gaps of the Au-Cu binary clusters are narrower than those of the Aun clusters except AuCu and Au3Cu. No obvious even-odd effect exists in the variations of the electron affinities and ionization potentials for the Aun-1Cu (n ≤ 9) clusters, which is in contrast to the case of gold clusters Aun.展开更多
文摘A systematic study on the structure and electronic properties of gold clusters doped each with one copper atom has been performed using the density functional theory. The average bond lengths in the Aun-1Cu (n ≤ 9) bimetallic clusters are shorter than those in the corresponding pure gold clusters. The ionization potentials of the bimetallic clusters Aun-1Cu (n 〈 9) are larger than those of the corresponding homoatomic gold clusters except for Aus. The energy gaps of the Au-Cu binary clusters are narrower than those of the Aun clusters except AuCu and Au3Cu. No obvious even-odd effect exists in the variations of the electron affinities and ionization potentials for the Aun-1Cu (n ≤ 9) clusters, which is in contrast to the case of gold clusters Aun.