期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv4的结构用锯材表面缺陷识别 被引量:14
1
作者 王勇 张伟 +1 位作者 高锐 金征 《林业工程学报》 CSCD 北大核心 2021年第4期120-126,共7页
结构用锯材在使用之前进行表面质量评价、分级,对于提高木材的综合利用率具有重要作用。综合利用机器视觉技术和深度学习方法,选取国内常用的云杉结构用锯材作为研究对象,通过工业相机采集结构用锯材表面主要缺陷(节子、虫眼、裂纹),并... 结构用锯材在使用之前进行表面质量评价、分级,对于提高木材的综合利用率具有重要作用。综合利用机器视觉技术和深度学习方法,选取国内常用的云杉结构用锯材作为研究对象,通过工业相机采集结构用锯材表面主要缺陷(节子、虫眼、裂纹),并对锯材主要缺陷进行数字化评价分析。先通过自主搭建的机器视觉图像采集装置,采集100块结构锯材正反面表面图像,共获取表面缺陷图像1 450张,其中活节缺陷图像550张、死节缺陷图像320张、裂纹缺陷图像295张、虫眼缺陷图像285张;随后搭建基于YOLOv4的深度学习缺陷检测识别框架,对缺陷图像中80%的图像进行训练,剩余20%用于测试。试验结果表明,基于YOLOv4的深度学习缺陷检测识别框架,能有效识别并准确定位锯材表面缺陷的类型和位置,平均识别率96.7%,其中活节缺陷识别率100%、死节缺陷识别率97.5%、裂纹缺陷识别率90%、虫眼缺陷识别率96.7%,可满足生产应用需求。 展开更多
关键词 深度学习 YOLOv4 锯材表面质量 表面缺陷 质量评价
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部