Pyrolusite reduction processes by three major biomass components cellulose,hemicelluloses and lignin,represented by CP,HP and LP,respectively,were investigated by thermogravimetric analyzer coupled with Fourier transf...Pyrolusite reduction processes by three major biomass components cellulose,hemicelluloses and lignin,represented by CP,HP and LP,respectively,were investigated by thermogravimetric analyzer coupled with Fourier transform infrared spectrometry(TG-FTIR).The Sestak-Berggren(SB) equation was used to evaluate the kinetics of reduction processes.TG analysis reveals that the main reduction processes occur at 250-410 ℃,220-390 ℃,and 190-410 ℃ for CP,HP,and LP,respectively.FT-IR and XRD results indicate that various reducing volatiles(e.g.aldehydes,furans,ketones and alcohols) are produced from the pyrolysis with the three major components,which directly reduce MnO_2 in ore to MnO.The processes are described by the SB equation with three parameters(m,n,p).Their non-zero values suggest that pyrolusite reduction is controlled by the diffusion of reducing gaseous products through an ash/inert layer associated with minerals.The apparent activation energies for pyrolusite reduction by CP,HP and LP are 40.48,25.70 and 40.10 kJ·mol^(-1),respectively.展开更多
A new method for the determination of baicalin with HPLC-CL was developed. The method was based on the chemiluminescence reaction between KMnO4 and baicalin sensitized from HCHO. The linear range was 3.7?0-6~9.8?0-5...A new method for the determination of baicalin with HPLC-CL was developed. The method was based on the chemiluminescence reaction between KMnO4 and baicalin sensitized from HCHO. The linear range was 3.7?0-6~9.8?0-5 mol/L with detection limit of 1.7?0-6 mol/L and the relative standard deviation was 2.5 % (Cs=6.6?0-5 mol/L, n=5). The method has been applied to the determination of baicalin in oral administration, injection, Scutellariae radix and granules with good results.展开更多
The co-extraction behavior of galena-pyrolusite in a sodium chloride solution and the electrochemical mechanism of this process were investigated,and some factors affecting the leaching rate of Pb and Mn were optimize...The co-extraction behavior of galena-pyrolusite in a sodium chloride solution and the electrochemical mechanism of this process were investigated,and some factors affecting the leaching rate of Pb and Mn were optimized.The results show that all the factors such as the concentration of NaCl,HCl and pyrolusite ore,reaction time,temperature,adding times of HCl,affect the leaching rate of Pb.The main affecting factors are the concentration of NaCl,reaction time and temperature.The Tafel polarization curves and EIS plots of the galena and pyrolusite in the NaCl solution demonstrate that during the oxidation process of galena mineral electrode,film forms on the galena surface,which prevents galena from deeper oxidation.However,the film resistance can be greatly reduced in the presence of sodium chloride,thus promoting the reaction rate of galena.展开更多
While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geolo...While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geological factors, the complexity of geological process and the asymmetry of geo-information. In this work, the manganese potential mapping for further exploration targeting is implemented via spatial analysis and modal-adaptive prospectivity modeling. On the basis of targeting criteria developed by the mineral system approach, the spatial analysis is leveraged to extract the predictor variables to identify features of the geological process. Specifically, a metallogenic field analysis approach is proposed to extract metallogenic information that quantifies the regional impacts of the synsedimentary faults and sedimentary basins. In the integration of the extracted predictor variables, a modal-adaptive prospectivity model is built, which allows to adapt different data availability and geological process. The resulting prospective areas of high potential not only correspond to the areas of known manganese deposits but also provide a number of favorable targets in the region for future mineral exploration.展开更多
The performance and mechanism of manganate preoxidation process for organics removal were investigated in the present paper.The results showed that manganate was a potentially powerful oxidizing agent and could make t...The performance and mechanism of manganate preoxidation process for organics removal were investigated in the present paper.The results showed that manganate was a potentially powerful oxidizing agent and could make the natural organic matter(NOM)concentration of sample solution increase.The process of manganate in combination with ferrous sulphate(FeMnO)was effective for organics removal and with the highest removal rate of 89%when the FeMnO dose was 0.18 mmol/L.The fluorescence analysis showed that the fluorescence intensity values related to hydrophobic acids and model humic acid polymers were the highest and the relative position of the main peak fluorescence intensity was shifted towards lower emission wavelengths,which indicated the reduction in the degree of aromaticity of residual organic matter fraction.展开更多
基金Supported by the National Natural Science Foundation of China(21166003)the Doctoral Foundation of Ministry of Education of China(20114501110004)
文摘Pyrolusite reduction processes by three major biomass components cellulose,hemicelluloses and lignin,represented by CP,HP and LP,respectively,were investigated by thermogravimetric analyzer coupled with Fourier transform infrared spectrometry(TG-FTIR).The Sestak-Berggren(SB) equation was used to evaluate the kinetics of reduction processes.TG analysis reveals that the main reduction processes occur at 250-410 ℃,220-390 ℃,and 190-410 ℃ for CP,HP,and LP,respectively.FT-IR and XRD results indicate that various reducing volatiles(e.g.aldehydes,furans,ketones and alcohols) are produced from the pyrolysis with the three major components,which directly reduce MnO_2 in ore to MnO.The processes are described by the SB equation with three parameters(m,n,p).Their non-zero values suggest that pyrolusite reduction is controlled by the diffusion of reducing gaseous products through an ash/inert layer associated with minerals.The apparent activation energies for pyrolusite reduction by CP,HP and LP are 40.48,25.70 and 40.10 kJ·mol^(-1),respectively.
文摘A new method for the determination of baicalin with HPLC-CL was developed. The method was based on the chemiluminescence reaction between KMnO4 and baicalin sensitized from HCHO. The linear range was 3.7?0-6~9.8?0-5 mol/L with detection limit of 1.7?0-6 mol/L and the relative standard deviation was 2.5 % (Cs=6.6?0-5 mol/L, n=5). The method has been applied to the determination of baicalin in oral administration, injection, Scutellariae radix and granules with good results.
基金Project(50774094) supported by the National Natural Science Foundation of China
文摘The co-extraction behavior of galena-pyrolusite in a sodium chloride solution and the electrochemical mechanism of this process were investigated,and some factors affecting the leaching rate of Pb and Mn were optimized.The results show that all the factors such as the concentration of NaCl,HCl and pyrolusite ore,reaction time,temperature,adding times of HCl,affect the leaching rate of Pb.The main affecting factors are the concentration of NaCl,reaction time and temperature.The Tafel polarization curves and EIS plots of the galena and pyrolusite in the NaCl solution demonstrate that during the oxidation process of galena mineral electrode,film forms on the galena surface,which prevents galena from deeper oxidation.However,the film resistance can be greatly reduced in the presence of sodium chloride,thus promoting the reaction rate of galena.
基金Project(2017YFC0601503)supported by the National Key R&D Program of ChinaProjects(41772349,41972309,41472301,41772348)supported by the National Natural Science Foundation of China。
文摘While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geological factors, the complexity of geological process and the asymmetry of geo-information. In this work, the manganese potential mapping for further exploration targeting is implemented via spatial analysis and modal-adaptive prospectivity modeling. On the basis of targeting criteria developed by the mineral system approach, the spatial analysis is leveraged to extract the predictor variables to identify features of the geological process. Specifically, a metallogenic field analysis approach is proposed to extract metallogenic information that quantifies the regional impacts of the synsedimentary faults and sedimentary basins. In the integration of the extracted predictor variables, a modal-adaptive prospectivity model is built, which allows to adapt different data availability and geological process. The resulting prospective areas of high potential not only correspond to the areas of known manganese deposits but also provide a number of favorable targets in the region for future mineral exploration.
文摘The performance and mechanism of manganate preoxidation process for organics removal were investigated in the present paper.The results showed that manganate was a potentially powerful oxidizing agent and could make the natural organic matter(NOM)concentration of sample solution increase.The process of manganate in combination with ferrous sulphate(FeMnO)was effective for organics removal and with the highest removal rate of 89%when the FeMnO dose was 0.18 mmol/L.The fluorescence analysis showed that the fluorescence intensity values related to hydrophobic acids and model humic acid polymers were the highest and the relative position of the main peak fluorescence intensity was shifted towards lower emission wavelengths,which indicated the reduction in the degree of aromaticity of residual organic matter fraction.