Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The e...Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.展开更多
基金Projects(51334008,51304243,51604160)supported by the National Natural Science Foundation of ChinaProject(2016zzts037)supported by the Fundamental Research Funds for the Central Universities,China
文摘Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.