To investigate the effect of electrolytic MnO2 (EMD) on the performance of LiMn2O4, several pretreatment methods, such as acid treating, presintering and impregnating with chromic salt, were used. The pretreated EMD...To investigate the effect of electrolytic MnO2 (EMD) on the performance of LiMn2O4, several pretreatment methods, such as acid treating, presintering and impregnating with chromic salt, were used. The pretreated EMD and prepared LiMn2O4 were characterized by X-ray diffraction and inductively coupled plasma emission spectrometry. Charge and discharge tests of Li/LiMn2O4 batteries were also employed to evaluate electrochemical performance. The experimental results show that inorganic impurity contents in EMD decrease remarkably after acid treating; presintering EMD can remove adsorbent water and organic impurity, enlarge pore space and increase active reaction sites; pre-doping chromium in EMD can form more homogenous compound substance LiCr0.05Mn1.95O4, which shows better structural stability and capacity retention.展开更多
基金Project (61172184) supported by the National Natural Science Foundation of ChinaProject (2007BAE12B01) supported by the National Key Technology R&D Program of China
文摘To investigate the effect of electrolytic MnO2 (EMD) on the performance of LiMn2O4, several pretreatment methods, such as acid treating, presintering and impregnating with chromic salt, were used. The pretreated EMD and prepared LiMn2O4 were characterized by X-ray diffraction and inductively coupled plasma emission spectrometry. Charge and discharge tests of Li/LiMn2O4 batteries were also employed to evaluate electrochemical performance. The experimental results show that inorganic impurity contents in EMD decrease remarkably after acid treating; presintering EMD can remove adsorbent water and organic impurity, enlarge pore space and increase active reaction sites; pre-doping chromium in EMD can form more homogenous compound substance LiCr0.05Mn1.95O4, which shows better structural stability and capacity retention.