A high strength GW94 alloy with fully recrystallized microstructure and equiaxed ultrafine grains of submicron size was produced by multiaxial forging and ageing. The alloy exhibits an ultimate tensile strength of 377...A high strength GW94 alloy with fully recrystallized microstructure and equiaxed ultrafine grains of submicron size was produced by multiaxial forging and ageing. The alloy exhibits an ultimate tensile strength of 377 MPa, proof stress of 295 MPa and elongation to failure of 21.7%. The ductility is improved in comparison with that of the conventional extrusion processing. Superplastic ductility is achieved in tensile testing at 573 K with a maximum elongation of 450%. These high ductility and high strength are attributed to the coexistence of fully recrystallized grains and nanoscale Mg 5 (Gd, Y) particles dynamically precipitated at grain boundaries.展开更多
Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reve...Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties.展开更多
The A356 aluminum alloy wheels were prepared by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of the t...The A356 aluminum alloy wheels were prepared by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of the thixo-forged A356 aluminum alloy wheels were investigated. The results show that the A356 aluminum alloy billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃. When the billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the billet can be easily thixo-forged into wheels. The tensile strength and elongation of thixo-forged wheels with T6 heat treatment are 327.6 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.展开更多
The effects of punch velocity on the microstructures and tensile properties of Mg2 Sip/AM60 B composite were investigated.In comparison,the tensile properties of the permanent mold casting of this composite were also ...The effects of punch velocity on the microstructures and tensile properties of Mg2 Sip/AM60 B composite were investigated.In comparison,the tensile properties of the permanent mold casting of this composite were also analyzed.The results indicate that the punch velocity obviously influences the microstructure through changing the secondary solidification behaviors and semisolid deformation mechanisms.The variations of the microstructures and deformation mechanisms are responsible for the changes in tensile properties and fracture modes of the composites.The best comprehensive tensile properties of this composite are obtained under the punch velocity of 60 mm/s.The resulting ultimate tensile strength and elongation of the composite are found to be 198 MPa and 10.2%,respectively.The excellent tensile properties of the thixoforged composite are ascribed to the elimination of porosities and the work hardening.展开更多
Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properti...Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properties.However,the process mostly produces parts from aluminium cast grades,thereby not fully utilising the true potential of this method.Hence,thermodynamic modelling can be used to formulate alloy compositions that favour this processing method.Here,the effects of reducing copper content and increasing silicon and magnesium contents on the thixoformability of aluminium alloy 2014 were presented.The work consists of both the modelling and experimental validation.Results showed that by increasing Si and decreasing Cu content in the alloy,the solidification interval temperature was decreased and the temperature working window between the stipulated liquid fractions was widened,two of the characteristics favouring the process.A high solid-solution temperature employed resulted in the dissolution of unfavourable Mg2Si compound.An increase in Mg content used also resulted in the formation of the compactπ-Al8FeMg3Si6 phase and the decrease in the amount of the sharp and plate-like structure of theβ-Al5FeSi phase,improving the strength of the modified alloy.Subsequent T6 heat treatment successfully further increased the strength of the modified alloy.展开更多
基金Project(2007CB613704)supported by the National Basic Research Program of China
文摘A high strength GW94 alloy with fully recrystallized microstructure and equiaxed ultrafine grains of submicron size was produced by multiaxial forging and ageing. The alloy exhibits an ultimate tensile strength of 377 MPa, proof stress of 295 MPa and elongation to failure of 21.7%. The ductility is improved in comparison with that of the conventional extrusion processing. Superplastic ductility is achieved in tensile testing at 573 K with a maximum elongation of 450%. These high ductility and high strength are attributed to the coexistence of fully recrystallized grains and nanoscale Mg 5 (Gd, Y) particles dynamically precipitated at grain boundaries.
基金Projects (2005CCA06400, 2007CB613807) supported by the National Basic Research Program of ChinaProject (CHD2012JC078) supported by the Special Fund for Basic Scientific Research of Central Colleges, China+1 种基金Project (0111201) supported by the State Key Laboratory for Machanical Behavior of MaterialsProject (20110474) supported by Natural Science Basic Research Plan in Shaanxi Province of China
文摘Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties.
基金Project(2012B090600051)supported by the Guangdong Provincial Department of Science and Technology,ChinaProject(2013EG115006)supported by the Special Program for Technology Development from the Ministry of Science and Technology of China
文摘The A356 aluminum alloy wheels were prepared by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of the thixo-forged A356 aluminum alloy wheels were investigated. The results show that the A356 aluminum alloy billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃. When the billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the billet can be easily thixo-forged into wheels. The tensile strength and elongation of thixo-forged wheels with T6 heat treatment are 327.6 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.
基金Project(51804190)supported by the National Natural Science Foundation of ChinaProject(ZR2017LEM001)supported by Shandong Provincial Natural Science Foundation,China+1 种基金Project(2017CXGC0404)supported by Shandong Province Key Research and Development Plan,ChinaProject(2019QN0022)supported by the Youth Science Funds of Shandong Academy of Sciences,China.
文摘The effects of punch velocity on the microstructures and tensile properties of Mg2 Sip/AM60 B composite were investigated.In comparison,the tensile properties of the permanent mold casting of this composite were also analyzed.The results indicate that the punch velocity obviously influences the microstructure through changing the secondary solidification behaviors and semisolid deformation mechanisms.The variations of the microstructures and deformation mechanisms are responsible for the changes in tensile properties and fracture modes of the composites.The best comprehensive tensile properties of this composite are obtained under the punch velocity of 60 mm/s.The resulting ultimate tensile strength and elongation of the composite are found to be 198 MPa and 10.2%,respectively.The excellent tensile properties of the thixoforged composite are ascribed to the elimination of porosities and the work hardening.
基金the National University of Malaysia (Universiti Kebangsaan Malaysia, UKM)the Ministry of Education (MOE) of Malaysia for the financial support received under research grant DIP-2016-007
文摘Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properties.However,the process mostly produces parts from aluminium cast grades,thereby not fully utilising the true potential of this method.Hence,thermodynamic modelling can be used to formulate alloy compositions that favour this processing method.Here,the effects of reducing copper content and increasing silicon and magnesium contents on the thixoformability of aluminium alloy 2014 were presented.The work consists of both the modelling and experimental validation.Results showed that by increasing Si and decreasing Cu content in the alloy,the solidification interval temperature was decreased and the temperature working window between the stipulated liquid fractions was widened,two of the characteristics favouring the process.A high solid-solution temperature employed resulted in the dissolution of unfavourable Mg2Si compound.An increase in Mg content used also resulted in the formation of the compactπ-Al8FeMg3Si6 phase and the decrease in the amount of the sharp and plate-like structure of theβ-Al5FeSi phase,improving the strength of the modified alloy.Subsequent T6 heat treatment successfully further increased the strength of the modified alloy.