This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils a...This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils and fabricating the thick magnetic (NiFe) core on the silicon wafer. The multi-turns planar micro coils are fabricated by the electroplating method from the surface along the line and by dynamically controlling the current density of the copper electrolytes. In order to fabricate thick NiFe plating,the adhesion properties between the NiFe plating and the silicon substrates are improved by changing the surface roughness of the silicon substrates and increasing the thickness of the seed layer. Furthermore,the micro electromagnetic actuator is tested and the energy density of the actuator is evaluated by force testing. The experiments show that the microactuator is efficient in producing high magnetic energy density and high magnetic force.展开更多
Gas wiping is a decisive operation in hot-dip galvanizing process. In special, it has a crucial influence on the thickness and uniformity in coating film, but may be subsequently responsible for the problem of splashi...Gas wiping is a decisive operation in hot-dip galvanizing process. In special, it has a crucial influence on the thickness and uniformity in coating film, but may be subsequently responsible for the problem of splashing. The progress of industry demands continuously the reduction of production costs which may relate directly with the increase of coating speed, and the speed up of coating results in the increase of stagnation pressure in gas wiping system in final. It is known that the increase of stagnation pressure may accompany a harmful problem of splashing in general. Together with these, also, from the view point of energy consumption, it is necessary to design a nozzle optimally. And there is known that the downward tilting of nozzle using in air knife system is effective to prevent in somewhat the harmful problem of splashing. In these connections, first, we design a nozzle with constant expansion rate. Next, for the case of actual coating conditions in field, the effects of tilting of the constant expansion rate nozzle are investigated by numerical analysis. Under the present numerical conditions, it was turned out that the nozzle of constant expansion rate of p = having a downward jet angle of 5^0 is the most effective to diminish the onset of splashing, while the influence of small tilting of the nozzle on impinging wall pres- sure itself is not so large.展开更多
文摘This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils and fabricating the thick magnetic (NiFe) core on the silicon wafer. The multi-turns planar micro coils are fabricated by the electroplating method from the surface along the line and by dynamically controlling the current density of the copper electrolytes. In order to fabricate thick NiFe plating,the adhesion properties between the NiFe plating and the silicon substrates are improved by changing the surface roughness of the silicon substrates and increasing the thickness of the seed layer. Furthermore,the micro electromagnetic actuator is tested and the energy density of the actuator is evaluated by force testing. The experiments show that the microactuator is efficient in producing high magnetic energy density and high magnetic force.
文摘Gas wiping is a decisive operation in hot-dip galvanizing process. In special, it has a crucial influence on the thickness and uniformity in coating film, but may be subsequently responsible for the problem of splashing. The progress of industry demands continuously the reduction of production costs which may relate directly with the increase of coating speed, and the speed up of coating results in the increase of stagnation pressure in gas wiping system in final. It is known that the increase of stagnation pressure may accompany a harmful problem of splashing in general. Together with these, also, from the view point of energy consumption, it is necessary to design a nozzle optimally. And there is known that the downward tilting of nozzle using in air knife system is effective to prevent in somewhat the harmful problem of splashing. In these connections, first, we design a nozzle with constant expansion rate. Next, for the case of actual coating conditions in field, the effects of tilting of the constant expansion rate nozzle are investigated by numerical analysis. Under the present numerical conditions, it was turned out that the nozzle of constant expansion rate of p = having a downward jet angle of 5^0 is the most effective to diminish the onset of splashing, while the influence of small tilting of the nozzle on impinging wall pres- sure itself is not so large.