A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2...A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0. 03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150℃ for 10 h.展开更多
Tin films on copper substrate, obtained by electrodeposition procedure, were structural and electrochemical characterized. In particular to investigate the possibility to use such metal as possible negative electrode ...Tin films on copper substrate, obtained by electrodeposition procedure, were structural and electrochemical characterized. In particular to investigate the possibility to use such metal as possible negative electrode in Na+ rechargeable batteries, EPS (electrochemical potential spectroscopy) and galvanostatic charge/discharge cycling of the electrodes were investigated, at room temperature in organic electrolyte. Three crystalline and one amorphous phases were identified as well as high discharge capacity (738 mAb/g) was obtained after 4 cycles. Unfortunately material fading, due to the internal stress during sodiation/desodiation process, causes poor cyclability.展开更多
文摘A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0. 03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150℃ for 10 h.
文摘Tin films on copper substrate, obtained by electrodeposition procedure, were structural and electrochemical characterized. In particular to investigate the possibility to use such metal as possible negative electrode in Na+ rechargeable batteries, EPS (electrochemical potential spectroscopy) and galvanostatic charge/discharge cycling of the electrodes were investigated, at room temperature in organic electrolyte. Three crystalline and one amorphous phases were identified as well as high discharge capacity (738 mAb/g) was obtained after 4 cycles. Unfortunately material fading, due to the internal stress during sodiation/desodiation process, causes poor cyclability.