H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to char...H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to characterize the composition, mineral phase component and microstructure of the titanium slag. The H3PO4 oxidation thermodynamic, mineral phase transformation, microstructure, element distribution in titanium slag during H3PO4 oxidation process and leaching process were investigated. The thermodynamic analysis indicated that H3PO4 could promote the decomposition of MgTi2O5 and CaSiO3. The results indicated that H3PO4 could effectively promote the transformation of titanium-bearing mineral to rutile and enrich the impurities in MxTi(3-x)O5 into phosphate which could be removed by acid leaching process. Under the studied conditions, the leaching rates of magnesium and calcium reached 94.68% and 87.19%, respectively. The acid leached slag containing 0.19% MgO and 0.13% CaO(mass fraction) was obtained.展开更多
The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentratio...The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.展开更多
The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amou...The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amount were chosen as the investigated parameters.To maximize the leaching efficiency of nickel,copper,cobalt and minimize the dissolution of magnesium and iron ions,the model suggested a combination of optimal parameters of particles less than 0.074 mm being 72.11%,sulfuric acid addition being 300 kg/t,pulp density being 5%and inoculation amount being 12.88%.Under the conditions,the average results of three parallel experiments were 89.43%of nickel leaching efficiency,36.78%of copper leaching efficiency,84.07%of cobalt leaching efficiency,49.19%of magnesium leaching efficiency and 0.20 g/L of iron concentration.The model indicated that the most significant factor in response of the leaching efficiency of valuable metal is the particle size,and the most significant factor in response to the leaching efficiency of harmful ions(Mg2+)is the amount of sulfuric acid addition.And according to the suggested models,no significance of the interaction effect between particle size and acid addition was shown.Under the optimized parameters suggested by models,the valuable metals could be separated from harmful ions during the bioleaching process.展开更多
A novel and clean technological route for the comprehensive utilization of low-grade ludwigite ore was proposed, inwhich magnesium was extracted by metallizing reduction?magnetic separation, sulfuric acid leaching an...A novel and clean technological route for the comprehensive utilization of low-grade ludwigite ore was proposed, inwhich magnesium was extracted by metallizing reduction?magnetic separation, sulfuric acid leaching and ethanol precipitationoperation. Meanwhile, iron-rich product, silicon-rich product and boron-rich product were obtained, respectively. In the process ofmetallizing reduction-magnetic separation, 94.6% of magnesium was enriched in the non-magnetic substance from the ore reducedat 1250 ℃ for 60 min with the ore size of 0.50-2.00 mm and coal size of 0.50-1.50 mm. When the non-magnetic substance wasleached at 90 ℃ for 15 min with the liquid-to-solid ratio of 7:1, 87.4% of magnesium was leached into the liquor separated fromsilicon gathering in leaching residue. The ethanol precipitation was conducted for 30 min with the ethanol-to-original liquid volumeratio of 1.5:1 at room temperature. 97.2% of magnesium was precipitated out with the initial concentration of 0.8 mol/L in the formof MgSO4·7H2O.展开更多
基金Project(51974364) supported by the National Natural Science Foundation of ChinaProject(2020YFC1909203) supported by the National Key R&D Program of ChinaProject(2018TP1002) supported by the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, China。
文摘H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to characterize the composition, mineral phase component and microstructure of the titanium slag. The H3PO4 oxidation thermodynamic, mineral phase transformation, microstructure, element distribution in titanium slag during H3PO4 oxidation process and leaching process were investigated. The thermodynamic analysis indicated that H3PO4 could promote the decomposition of MgTi2O5 and CaSiO3. The results indicated that H3PO4 could effectively promote the transformation of titanium-bearing mineral to rutile and enrich the impurities in MxTi(3-x)O5 into phosphate which could be removed by acid leaching process. Under the studied conditions, the leaching rates of magnesium and calcium reached 94.68% and 87.19%, respectively. The acid leached slag containing 0.19% MgO and 0.13% CaO(mass fraction) was obtained.
基金Project(2007CB613601)supported by the National Basic Research Program of ChinaProject(10C1095)supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.
基金Projects(51704028,51574036) supported by the National Natural Science Foundation of China。
文摘The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amount were chosen as the investigated parameters.To maximize the leaching efficiency of nickel,copper,cobalt and minimize the dissolution of magnesium and iron ions,the model suggested a combination of optimal parameters of particles less than 0.074 mm being 72.11%,sulfuric acid addition being 300 kg/t,pulp density being 5%and inoculation amount being 12.88%.Under the conditions,the average results of three parallel experiments were 89.43%of nickel leaching efficiency,36.78%of copper leaching efficiency,84.07%of cobalt leaching efficiency,49.19%of magnesium leaching efficiency and 0.20 g/L of iron concentration.The model indicated that the most significant factor in response of the leaching efficiency of valuable metal is the particle size,and the most significant factor in response to the leaching efficiency of harmful ions(Mg2+)is the amount of sulfuric acid addition.And according to the suggested models,no significance of the interaction effect between particle size and acid addition was shown.Under the optimized parameters suggested by models,the valuable metals could be separated from harmful ions during the bioleaching process.
基金Project(20100042110004)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProjects(N090502004,N140206003)supported by Fundamental Research Funds for the Central University,China
文摘A novel and clean technological route for the comprehensive utilization of low-grade ludwigite ore was proposed, inwhich magnesium was extracted by metallizing reduction?magnetic separation, sulfuric acid leaching and ethanol precipitationoperation. Meanwhile, iron-rich product, silicon-rich product and boron-rich product were obtained, respectively. In the process ofmetallizing reduction-magnetic separation, 94.6% of magnesium was enriched in the non-magnetic substance from the ore reducedat 1250 ℃ for 60 min with the ore size of 0.50-2.00 mm and coal size of 0.50-1.50 mm. When the non-magnetic substance wasleached at 90 ℃ for 15 min with the liquid-to-solid ratio of 7:1, 87.4% of magnesium was leached into the liquor separated fromsilicon gathering in leaching residue. The ethanol precipitation was conducted for 30 min with the ethanol-to-original liquid volumeratio of 1.5:1 at room temperature. 97.2% of magnesium was precipitated out with the initial concentration of 0.8 mol/L in the formof MgSO4·7H2O.