期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Electrochemical behaviors of Mg^(2+) and B^(3+) deposition in fluoride molten salts 被引量:3
1
作者 石忠宁 李敏 +3 位作者 李兰兰 高炳亮 胡宪伟 王兆文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1655-1659,共5页
By using cyclic and linear sweep voltammetry,the electrochemical deposition behaviors of Mg^2+ and B^3+ in fluorides molten salts of KF-MgF2 and KF-KBF4 at 880℃ were investigated,respectively.The results show that ... By using cyclic and linear sweep voltammetry,the electrochemical deposition behaviors of Mg^2+ and B^3+ in fluorides molten salts of KF-MgF2 and KF-KBF4 at 880℃ were investigated,respectively.The results show that the electrochemical reduction of Mg^2+ is a one-step reaction as Mg^2++2e-→Mg in KF-1%MgF2 molten salt,and the electrochemical reduction of B^3+ is also a one-step reaction as B^3++3e-→B in KF-KBF4 (1%,2% KBF4) molten salts.Both the cathodic reduction reactions of Mg^2+ and B^3+ are controlled by diffusion process.The diffusion coefficients of Mg^2+ in KF-MgF2 molten salts and B^3+ in KF-KBF4 molten salts are 6.8×10^-7 cm^2/s and 7.85×10^-7 cm^2/s,respectively.Moreover,the electrochemical synthesis of MgB2 by co-deposition of Mg and B was carried out in the KF-MgF2-KBF4 (molar ratio of 6:1:2) molten salt at 750℃.The X-ray diffraction analysis indicates that MgB2 can be deposited on graphite cathode in the KF-MgF2-KBF4 molten salt at 750℃. 展开更多
关键词 magnesium diboride ELECTRO-DEPOSITION fluoride molten salts diffusion coefficient
下载PDF
Electrodeposition of Cu coating with high corrosion resistance on Mg-3.0Nd-0.2Zn-0.4Zr magnesium alloy 被引量:1
2
作者 王少华 郭兴伍 +3 位作者 孙灿 龚佳 彭立明 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3810-3817,共8页
To improve the corrosion resistance, electrodeposition of Cu coating on Mg-3.0Nd-0.2Zn-0.4Zr (mass fraction, %NZ30K) magnesium alloy via an appropriate pretreatment was investigated. The surface morphologies, compos... To improve the corrosion resistance, electrodeposition of Cu coating on Mg-3.0Nd-0.2Zn-0.4Zr (mass fraction, %NZ30K) magnesium alloy via an appropriate pretreatment was investigated. The surface morphologies, compositions and microstructures of the pretreated films and Cu coating were characterized in detail. The results show that the activation film consists of fluoride and phosphates and Zn immersion film forms preferentially on the eutectic compound Mg12Nd phase region. A smooth, uniform and dense Cu coating is successfully obtained. Potentiodynamic polarization tests reveal that Cu coating can greatly improve the corrosion resistance of NZ30K magnesium alloy. Open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tests during long-term immersion further demonstrate that Cu coating can provide an effective protection for NZ30K magnesium alloy from corrosion up to ~60 h, due to its dense structure and a stable passive film formed. In addition, Cu coating exhibits good adhesion to substrate as confirmed by thermal shock test. 展开更多
关键词 NZ30K magnesium alloy PRETREATMENT Cu electrodeposition corrosion resistance ADHESION
下载PDF
Preparation of porous Mg electrode by electrodeposition 被引量:1
3
作者 郑伟伟 徐强 +2 位作者 丁飞 张晶 刘兴江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2099-2103,共5页
In order to obtain a porous Mg electrode with a stable skeleton, organic Mg fuel cell (OMFC), the electrochemical behavior of Mg deposition on Cu and Ni metallic substrates in 1 mol/L EtMgBr/THF solution was investi... In order to obtain a porous Mg electrode with a stable skeleton, organic Mg fuel cell (OMFC), the electrochemical behavior of Mg deposition on Cu and Ni metallic substrates in 1 mol/L EtMgBr/THF solution was investigated by SEM, EDS and electrochemical methods. The experimental results show that Mg can be electrodeposited on both substrates, as a continuous layer on a Cu substrate. Accordingly, an approach for producing a porous Mg electrode with a stable skeleton of OMFC was proposed by means of electrodeposition of Mg on a foamed Ni substrate with a layer of Cu pre-plating. The discharge performance of this porous Mg electrode of OMFC is superior to that of a planar Mg electrode. 展开更多
关键词 magnesium electrodeposition porous electrode organic electrolyte discharge performance
下载PDF
Electrochemical discharging performance of 3D porous magnesium electrode in organic electrolyte 被引量:1
4
作者 程刚 徐强 +4 位作者 赵夕 丁飞 张晶 刘兴江 曹殿学 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1367-1374,共8页
A novel type of porous magnesium electrode with a stable 3D copper foam as current collectors for the organic magnesium-air battery was prepared by both amperostatic and pulsed electrodeposition of magnesium on copper... A novel type of porous magnesium electrode with a stable 3D copper foam as current collectors for the organic magnesium-air battery was prepared by both amperostatic and pulsed electrodeposition of magnesium on copper foam substrates in an electrolyte of 1 mol/L EtMgBr/THF solution, respectively. Optimal parameters of the pulsed electrodeposition were obtained using a bending cathode at the right angle. The surface morphology of the porous electrode was investigated by SEM, and the discharging performance of the porous magnesium electrode was detected by the chronoamperometric measurement. The electrochemical stability of 3D copper foam current collectors was examined by cyclic voltammetry, SEM and ICP-OES analyses. The results show that the rate capability of the porous magnesium electrode with a stable 3D copper foam as a current collector is better than that of the planar magnesium electrode, and the rate capability of the porous magnesium electrode prepared by the pulsed electrodeposition is superior to that of the porous magnesium electrode prepared by the amperostatic electrodeposition. The 3D structure of copper foam current collectors of the porous magnesium electrode could keep stable during the discharging process. 展开更多
关键词 metal semi-fuel cell porous magnesium electrode copper foam ELECTRODEPOSITION discharge behavior
下载PDF
Electrodeposition of aluminum and aluminum-magnesium alloys at room temperature 被引量:5
5
作者 阚洪敏 祝跚珊 +1 位作者 张宁 王晓阳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3689-3697,共9页
Electrodeposition of aluminum from benzene-tetrahydrofuran-Al Cl3-Li Al H4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and... Electrodeposition of aluminum from benzene-tetrahydrofuran-Al Cl3-Li Al H4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities(10-25 m A/cm2), molar ratio of benzene and tetrahydrofuran(4:1 to 7:8) and stirring speeds(200-500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al-Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran-Al Cl3-Li Al H4. XRD shows that the aluminum-magnesium alloys are mainly Al3Mg2 and Al12Mg17. 展开更多
关键词 ELECTRODEPOSITION aluminum coating aluminum-magnesium(Al-Mg) coating organic solvent system
下载PDF
Micro arc oxidation and electrophoretic deposition effect on damping and sound transmission characteristics of AZ31B magnesium Alloy 被引量:1
6
作者 罗智 郝志勇 +2 位作者 蒋百灵 葛延峰 郑旭 《Journal of Central South University》 SCIE EI CAS 2014年第9期3419-3425,共7页
Micro arc oxidation(MAO) and electrophoretic deposition(EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the dampi... Micro arc oxidation(MAO) and electrophoretic deposition(EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the damping characteristic of magnesium alloy, and both the MAO and EPD process change the bending stiffness of samples being treated. Damping loss factor(DLF) test and sound transmission experiments were carried out for AZ31 B magnesium alloy with coating fabricated by MAO and EPD processes. The results indicate that DLF is improved in frequency range from 0-850 Hz. Bending stiffness of the samples is improved with MAO and EPD treatment. As a result, the sound transmission loss(LST) is improved in the stiffness control stage of the sound transmission verse frequency curve. To the samples by electrophoresis process, the LST is improved in frequency range from 2500-3200 Hz, because the damping loss factor is improved with EPD process. The results are useful for the surface treatment to enhance the damping loss factor, LST and widespread application of magnesium alloy while improving the corrosion resistance. 展开更多
关键词 magnesium alloy micro arc oxidation electrophoretic deposition damping loss factor sound transmission loss bending stiffness
下载PDF
Online evaluation of electroless deposition rate by electrochemical noise method 被引量:2
7
作者 Z.RAJABALIZADEH D.SEIFZADEH A.HABIBI-YANGJEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1753-1762,共10页
Continuous noise resistance calculation(CNRC)technique was used for online determination of the electroless nickel deposition rate on zirconium pretreated magnesium alloy.For this purpose,the noise resistance(R_n) var... Continuous noise resistance calculation(CNRC)technique was used for online determination of the electroless nickel deposition rate on zirconium pretreated magnesium alloy.For this purpose,the noise resistance(R_n) variation with time was calculated for the pretreated alloy surface in the electroless plating solution.The CNRC results were described by energy dispersive X-ray spectroscopy(EDS)and scanning electron microscopy(SEM)techniques.Also,potentiodynamic polarization and gravimetric measurements were used for determination of the electroless deposition rate at the same time period and the results were compared with the CNRC results.The Rn variation with plating time shows that the electroless plating consists of different stages with various deposition rates.The results of the CNRC and polarization methods were not in acceptable agreement due to the limitations of the polarization method for online monitoring of the deposition rate.However,the results of the gravimetric measurements were in complete agreement with the CNRC technique and so,the CNRC can be considered as suitable tool for online evaluation of the electroless deposition rate. 展开更多
关键词 magnesium alloy electroless plating deposition rate electrochemical noise SEM EDS
下载PDF
High specific strength MWCNTs/Mg-14Li-1Al composite prepared by electrophoretic deposition, friction stir processing and cold rolling
8
作者 Lin XU Jia-hao WANG +4 位作者 Rui-zhi WU Chun-bo ZHANG Hua-jie WU Le-gan HOU Jing-huai ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期3914-3925,共12页
Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanic... Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength. 展开更多
关键词 metal matrix composites Mg-Li alloy multi-wall carbon nanotubes electrophoretic deposition friction stir processing ROLLING strengthening mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部