Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice o...Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.展开更多
In order to obtain a porous Mg electrode with a stable skeleton, organic Mg fuel cell (OMFC), the electrochemical behavior of Mg deposition on Cu and Ni metallic substrates in 1 mol/L EtMgBr/THF solution was investi...In order to obtain a porous Mg electrode with a stable skeleton, organic Mg fuel cell (OMFC), the electrochemical behavior of Mg deposition on Cu and Ni metallic substrates in 1 mol/L EtMgBr/THF solution was investigated by SEM, EDS and electrochemical methods. The experimental results show that Mg can be electrodeposited on both substrates, as a continuous layer on a Cu substrate. Accordingly, an approach for producing a porous Mg electrode with a stable skeleton of OMFC was proposed by means of electrodeposition of Mg on a foamed Ni substrate with a layer of Cu pre-plating. The discharge performance of this porous Mg electrode of OMFC is superior to that of a planar Mg electrode.展开更多
For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal el...For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states.展开更多
This paper report the synthesis and properties of a series of composite polymer electrolytes formed by dispersion of a non-ionic organic plastic material SN (succinonitrile) into poly(vinyl alcohol) complexed with...This paper report the synthesis and properties of a series of composite polymer electrolytes formed by dispersion of a non-ionic organic plastic material SN (succinonitrile) into poly(vinyl alcohol) complexed with magnesium acid salt. SEM (scanning electron microscope) images of different SN concentrations of films revealed that large open pore structure were also frequently present, when SN content increase up to 7.5 wt%. The addition of SN greatly enhances ionic conductivities of the electrolytes which is due to the high polarity and diffusivity of SN. The Mg2~ (magnesium ion) ion conduction is confirmed from impedance spectroscopy and transport number measurements. The highest conducting sample in the plasticized system was used to fabricate Mg (magnesium) battery with configuration Mg/SPE/TiO2. The discharge capacity of the fabricated battery was 17.5 mAh/gm.展开更多
基金supported by the Ensemble Grant for Early Career Researchers 2022-2023 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,JP18H05513,and JP23K13542.F.Y.and Q.W.acknowledge the China Scholarship Council(CSC)to support their studies in Japan.
文摘Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.
基金Project(20973124)supported by the National Natural Science Foundation of China
文摘In order to obtain a porous Mg electrode with a stable skeleton, organic Mg fuel cell (OMFC), the electrochemical behavior of Mg deposition on Cu and Ni metallic substrates in 1 mol/L EtMgBr/THF solution was investigated by SEM, EDS and electrochemical methods. The experimental results show that Mg can be electrodeposited on both substrates, as a continuous layer on a Cu substrate. Accordingly, an approach for producing a porous Mg electrode with a stable skeleton of OMFC was proposed by means of electrodeposition of Mg on a foamed Ni substrate with a layer of Cu pre-plating. The discharge performance of this porous Mg electrode of OMFC is superior to that of a planar Mg electrode.
文摘For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states.
文摘This paper report the synthesis and properties of a series of composite polymer electrolytes formed by dispersion of a non-ionic organic plastic material SN (succinonitrile) into poly(vinyl alcohol) complexed with magnesium acid salt. SEM (scanning electron microscope) images of different SN concentrations of films revealed that large open pore structure were also frequently present, when SN content increase up to 7.5 wt%. The addition of SN greatly enhances ionic conductivities of the electrolytes which is due to the high polarity and diffusivity of SN. The Mg2~ (magnesium ion) ion conduction is confirmed from impedance spectroscopy and transport number measurements. The highest conducting sample in the plasticized system was used to fabricate Mg (magnesium) battery with configuration Mg/SPE/TiO2. The discharge capacity of the fabricated battery was 17.5 mAh/gm.