Removal of lead and cadmium ions from aqueous solutions by adsorption process was investigated. Low cost and locally available natural mineral of manganoxide mineral was used as an adsorbent. The kinetics of adsorptio...Removal of lead and cadmium ions from aqueous solutions by adsorption process was investigated. Low cost and locally available natural mineral of manganoxide mineral was used as an adsorbent. The kinetics of adsorption process data was examined using the pseudo-first-order, pseudo-second-order kinetics and the intra-particle diffusion models. The rate constants of adsorption for all these kinetics models were calculated and compared. The adsorption kinetics was best described by the pseudo second-order model. The Langmuir and Freundlich adsorption isotherm models were applied to the experimental equilibrium data at different temperatures. The experimental data well fitted to Langmuir isotherm model. The maximum adsorption capacities of manganoxide mineral for lead and cadmium ions were calculated from the Langmuir isotherm and were 98 and 6.8 mg/g, respectively. Thermodynamic parameters such as the change of Gibbs free energy, enthalpy and entropy of adsorption were also calculated and it was found that the lead and cadmium uptake reactions by manganoxide mineral were endothermic and spontaneous in nature. Therefore, manganoxide mineral can be used as adsorbents for lead and cadmium ions removal processes as an alternative natural mineral among the others.展开更多
The adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings was investigated to demonstrate the adsorptivity of the bauxite flotation tailings.The adsorption percentage of Pb2+ and Cd2+ ions as a funct...The adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings was investigated to demonstrate the adsorptivity of the bauxite flotation tailings.The adsorption percentage of Pb2+ and Cd2+ ions as a function of adsorbent dosage,solution pH value and shaking time were determined by batch experiments.The maximum adsorption percentage of 99.93% for Pb2+ ions and 99.75% for Cd2+ ions were obtained by using bauxite flotation tailings as adsorbent.The methods,such as zeta potentials,specific surface area measurements and the analysis of adsorption kinetics,were introduced to analyze the adsorption mechanisms of the Pb2+ ions on bauxite flotation tailings.The isoelectric point of bauxite flotation tailings shifts from 3.6 to 5.6 in the presence of Pb2+ ions.The specific surface area of bauxite flotation tailings changes from 12.57 to 20.63 m2/g after the adsorption of Pb2+ ions.These results indicate that a specific adsorption of the cation species happens on the surface of bauxite flotation tailings.Adsorption data of Pb2+ ions on the surface of bauxite flotation tailings can be well described by Langmuir model,and the pseudo-second-order kinetic model provides the best correlation for the adsorption data of Pb2+ and Cd2+ ions on bauxite flotation tailings.展开更多
Interaction of salinity (NaCI) and cadmium (Cd) on growth, mineral nutrients, Na and Cd accumulation in four barley genotypes differing in salt tolerance was studied in a hydroponic experiment. Cd, NaCI and their ...Interaction of salinity (NaCI) and cadmium (Cd) on growth, mineral nutrients, Na and Cd accumulation in four barley genotypes differing in salt tolerance was studied in a hydroponic experiment. Cd, NaCI and their combined stresses reduced Ca and Mg concentrations in roots and shoots, K concentration in shoots, increased K and Cu concentrations in roots relative to control, but had non-significant effect on micronutrients Cu, Fe and Mn concentrations in shoot. The three stresses reduced accumulation of most tested nutrients in both roots and shoots, except NaCI and NaCl+Cd stresses for root K and shoot Cu accumulation in salt tolerant genotypes. The salt tolerant genotypes did not have higher nutrient concentration and accumulation than the sensitive ones when exposed to Cd and NaCI stresses. In conclusion, the affecting mechanism of Cd stress on nutrients was to some extent different from salinity stress, and the NaCl+Cd stress was not equal to additional Cd and NaCI stresses, probably due to the different valence and competitive site of Na^+ and Cd^2+. NaCI addition in the Cd-containing medium caused remarkable reductions in both Cd concentration and accumulation, with the extent of reduction being also dependent on genotypes. The salt-tolerant genotypes had lower Na concentration than sensitive ones.展开更多
A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with differ...A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.展开更多
A study on energy changes and mechanisms of Cd sorbed on goethite was performed using the technique ofmicrocalorimetry. The data of the amount of Cd sorption (Aq) and concentration of Cd in equilibrium solution(Ce), a...A study on energy changes and mechanisms of Cd sorbed on goethite was performed using the technique ofmicrocalorimetry. The data of the amount of Cd sorption (Aq) and concentration of Cd in equilibrium solution(Ce), and the data of Aq and the heat effect (AH) caused by Cd^2+ sorption on goethite all fitted Langmuirisotherm. The amount of heat released from Cd sorption on goethite increased with the amount of Ce or Aq.The reaction process of Cd sorption on goethite may be divided into five stages and three plateaus, dependingon the variation of enthalpy change (.Hm) of Cd sorption with Aq, which implied three mechanisms ofinteraCtion between Cd and goethite. The experimental results showed that the microcalorimetry may beuseful for determination of microcalorie variation in soil.展开更多
We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation...We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation of magnetite. The inhibitory effect on γ-Fe OOH transformation may not result from Cd^(2+) toxicity to the bacterium; it rather was probably due to competitive adsorption between Cd^(2+) and Fe^(2+) on γ-Fe OOH as its surface reduction catalyzed by adsorbed Fe^(2+) was eliminated by adsorption of Cd^(2+).展开更多
文摘Removal of lead and cadmium ions from aqueous solutions by adsorption process was investigated. Low cost and locally available natural mineral of manganoxide mineral was used as an adsorbent. The kinetics of adsorption process data was examined using the pseudo-first-order, pseudo-second-order kinetics and the intra-particle diffusion models. The rate constants of adsorption for all these kinetics models were calculated and compared. The adsorption kinetics was best described by the pseudo second-order model. The Langmuir and Freundlich adsorption isotherm models were applied to the experimental equilibrium data at different temperatures. The experimental data well fitted to Langmuir isotherm model. The maximum adsorption capacities of manganoxide mineral for lead and cadmium ions were calculated from the Langmuir isotherm and were 98 and 6.8 mg/g, respectively. Thermodynamic parameters such as the change of Gibbs free energy, enthalpy and entropy of adsorption were also calculated and it was found that the lead and cadmium uptake reactions by manganoxide mineral were endothermic and spontaneous in nature. Therefore, manganoxide mineral can be used as adsorbents for lead and cadmium ions removal processes as an alternative natural mineral among the others.
基金Project(2005CB623701) supported by the Major State Basic Research Development Program of China
文摘The adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings was investigated to demonstrate the adsorptivity of the bauxite flotation tailings.The adsorption percentage of Pb2+ and Cd2+ ions as a function of adsorbent dosage,solution pH value and shaking time were determined by batch experiments.The maximum adsorption percentage of 99.93% for Pb2+ ions and 99.75% for Cd2+ ions were obtained by using bauxite flotation tailings as adsorbent.The methods,such as zeta potentials,specific surface area measurements and the analysis of adsorption kinetics,were introduced to analyze the adsorption mechanisms of the Pb2+ ions on bauxite flotation tailings.The isoelectric point of bauxite flotation tailings shifts from 3.6 to 5.6 in the presence of Pb2+ ions.The specific surface area of bauxite flotation tailings changes from 12.57 to 20.63 m2/g after the adsorption of Pb2+ ions.These results indicate that a specific adsorption of the cation species happens on the surface of bauxite flotation tailings.Adsorption data of Pb2+ ions on the surface of bauxite flotation tailings can be well described by Langmuir model,and the pseudo-second-order kinetic model provides the best correlation for the adsorption data of Pb2+ and Cd2+ ions on bauxite flotation tailings.
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (No. Z304104)the Grains Research & Devel-opment Corporation (GRDC)Australia (No. UT-8)
文摘Interaction of salinity (NaCI) and cadmium (Cd) on growth, mineral nutrients, Na and Cd accumulation in four barley genotypes differing in salt tolerance was studied in a hydroponic experiment. Cd, NaCI and their combined stresses reduced Ca and Mg concentrations in roots and shoots, K concentration in shoots, increased K and Cu concentrations in roots relative to control, but had non-significant effect on micronutrients Cu, Fe and Mn concentrations in shoot. The three stresses reduced accumulation of most tested nutrients in both roots and shoots, except NaCI and NaCl+Cd stresses for root K and shoot Cu accumulation in salt tolerant genotypes. The salt tolerant genotypes did not have higher nutrient concentration and accumulation than the sensitive ones when exposed to Cd and NaCI stresses. In conclusion, the affecting mechanism of Cd stress on nutrients was to some extent different from salinity stress, and the NaCl+Cd stress was not equal to additional Cd and NaCI stresses, probably due to the different valence and competitive site of Na^+ and Cd^2+. NaCI addition in the Cd-containing medium caused remarkable reductions in both Cd concentration and accumulation, with the extent of reduction being also dependent on genotypes. The salt-tolerant genotypes had lower Na concentration than sensitive ones.
基金the Chinese Ministry of Science and Technology (China-Australian Special Link Research Program)the Grains Research and Development Corporation of Australia (No.UT-8).
文摘A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.
文摘A study on energy changes and mechanisms of Cd sorbed on goethite was performed using the technique ofmicrocalorimetry. The data of the amount of Cd sorption (Aq) and concentration of Cd in equilibrium solution(Ce), and the data of Aq and the heat effect (AH) caused by Cd^2+ sorption on goethite all fitted Langmuirisotherm. The amount of heat released from Cd sorption on goethite increased with the amount of Ce or Aq.The reaction process of Cd sorption on goethite may be divided into five stages and three plateaus, dependingon the variation of enthalpy change (.Hm) of Cd sorption with Aq, which implied three mechanisms ofinteraCtion between Cd and goethite. The experimental results showed that the microcalorimetry may beuseful for determination of microcalorie variation in soil.
基金financially supported by the National Natural Science Foundation of China(41601239)the Highlevel Leading Talent Introduction Program of GDAS,the China Postdoctoral Science Foundation(2016M600644)the"Pearl River Talents"Postdoctoral Program of Guangdong Province,and the National Key Research and Development Program of China(2016YFD0800703)
文摘We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation of magnetite. The inhibitory effect on γ-Fe OOH transformation may not result from Cd^(2+) toxicity to the bacterium; it rather was probably due to competitive adsorption between Cd^(2+) and Fe^(2+) on γ-Fe OOH as its surface reduction catalyzed by adsorbed Fe^(2+) was eliminated by adsorption of Cd^(2+).