Benzil bis(carbohydrazone)(BBC) is prepared and explored as new N N Schiff's base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosp...Benzil bis(carbohydrazone)(BBC) is prepared and explored as new N N Schiff's base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosphate best performance corresponds to a membrane composition of 30% poly(vinyl chloride), 65%(TEHP), 3.5% BBC and 1.5% tetradodecyl-ammoniumtetrakis(4-chlorophenyl) borate(ETH 500). This sensor shows very good selectivity and sensitivity towards cadmium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition, selectivity, pH and influence of additive on the response properties of electrode were investigated. The response mechanism was discussed in the view of UV-spectroscopy. The electrode exhibits a Nernstian behavior(with slope of 29.7 mV per decade) over a very wide concentration range from 1.0×10?1 to 1.0×10?8 mol·L?1 with a detection limit of 3.2×10?8 mol·L?1. It shows rela-tively fast response time in whole concentration range(<8 s) and can be used for at least 10 weeks in the pH range of 2.0-9.0. The proposed sensor is successfully used for the determination of cadmium in different chocolate sam-ples and as indicator electrode in titration with ethylene diamine tetraacetate(EDTA).展开更多
l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. T...l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. Then Fc-GSH was immobilized on the surface of gold electrode. Cyclic votammetry (CV) was adopted to investigate the electrochemical properties of this Fc-GSH modified electrode in the absence and presence of Cd^2+ aqueous solutions. The peak oxidation potential (Ea) and reduction potential (Ec) of Fc-GSH modified electrode were observed at Ea= 0.74 V and Ec= 0.64 V (vs Ag/AgCl) before the accumulation of Cd^2+. This redox process is a monoelectron chemical reaction. The anodic shift is about 80 mV in the presence of 20 nmol/L of Cd^2+ aqueous solution. Moreover, this shift is in proportion to the concentration of Cd^2+ when the concentration of Cd^2+ is lower than 20 nmol/L. So the modified electrode can be used as probes to detect cadmium ions with the limit of 0.1 nmol/L by cyclic voltammetry.展开更多
文摘Benzil bis(carbohydrazone)(BBC) is prepared and explored as new N N Schiff's base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosphate best performance corresponds to a membrane composition of 30% poly(vinyl chloride), 65%(TEHP), 3.5% BBC and 1.5% tetradodecyl-ammoniumtetrakis(4-chlorophenyl) borate(ETH 500). This sensor shows very good selectivity and sensitivity towards cadmium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition, selectivity, pH and influence of additive on the response properties of electrode were investigated. The response mechanism was discussed in the view of UV-spectroscopy. The electrode exhibits a Nernstian behavior(with slope of 29.7 mV per decade) over a very wide concentration range from 1.0×10?1 to 1.0×10?8 mol·L?1 with a detection limit of 3.2×10?8 mol·L?1. It shows rela-tively fast response time in whole concentration range(<8 s) and can be used for at least 10 weeks in the pH range of 2.0-9.0. The proposed sensor is successfully used for the determination of cadmium in different chocolate sam-ples and as indicator electrode in titration with ethylene diamine tetraacetate(EDTA).
基金Project(20676153) supported by the National Natural Science Foundation of China
文摘l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. Then Fc-GSH was immobilized on the surface of gold electrode. Cyclic votammetry (CV) was adopted to investigate the electrochemical properties of this Fc-GSH modified electrode in the absence and presence of Cd^2+ aqueous solutions. The peak oxidation potential (Ea) and reduction potential (Ec) of Fc-GSH modified electrode were observed at Ea= 0.74 V and Ec= 0.64 V (vs Ag/AgCl) before the accumulation of Cd^2+. This redox process is a monoelectron chemical reaction. The anodic shift is about 80 mV in the presence of 20 nmol/L of Cd^2+ aqueous solution. Moreover, this shift is in proportion to the concentration of Cd^2+ when the concentration of Cd^2+ is lower than 20 nmol/L. So the modified electrode can be used as probes to detect cadmium ions with the limit of 0.1 nmol/L by cyclic voltammetry.