通过改变溶剂热反应温度,合成了2个结构不同的镉配合物[Cd_2(H_2ppty)_2(SO_4)_2(H_2O)_2]·3H_2O(1)和[Cd_2(ppty)(SO_4)(H_2O)_2]_n(2)(H_2ppty=3,5-bis-(1H-pyrazol-3-yl)-[1,2,4]triazol-4-ylamine)。进一步的研究表明,1和2的...通过改变溶剂热反应温度,合成了2个结构不同的镉配合物[Cd_2(H_2ppty)_2(SO_4)_2(H_2O)_2]·3H_2O(1)和[Cd_2(ppty)(SO_4)(H_2O)_2]_n(2)(H_2ppty=3,5-bis-(1H-pyrazol-3-yl)-[1,2,4]triazol-4-ylamine)。进一步的研究表明,1和2的结构分别包含有双核和四核镉簇单元,呈现出零维和二维的结构。并且在室温下对2个配合物的荧光性质也进行了测试。固体紫外漫反射表明1和2的光学带隙分别为1.87和2.32 e V,因此它们对亚甲基蓝的光降解反应表现出了良好的催化活性。展开更多
The conversion of CO_(2) to methanol with high activity and high selectivity remains challenging owing to the kinetic and thermodynamic limitations associated with the low chemical reactivity exhibited by CO_(2).Herei...The conversion of CO_(2) to methanol with high activity and high selectivity remains challenging owing to the kinetic and thermodynamic limitations associated with the low chemical reactivity exhibited by CO_(2).Herein,we report a novel Cd/TiO_(2) catalyst exhibiting a methanol selectivity of 81%,a CO_(2) conversion of 15.8%,and a CH_(4) selectivity below 0.7%.A combination of experimental and computational studies revealed that the unique electronic properties exhibited by the Cd clusters supported by the TiO_(2) matrix were responsible for the high selectivity of CO_(2) hydrogenation to methanol via the HCOO*pathway at the interfacial catalytic sites.展开更多
文摘通过改变溶剂热反应温度,合成了2个结构不同的镉配合物[Cd_2(H_2ppty)_2(SO_4)_2(H_2O)_2]·3H_2O(1)和[Cd_2(ppty)(SO_4)(H_2O)_2]_n(2)(H_2ppty=3,5-bis-(1H-pyrazol-3-yl)-[1,2,4]triazol-4-ylamine)。进一步的研究表明,1和2的结构分别包含有双核和四核镉簇单元,呈现出零维和二维的结构。并且在室温下对2个配合物的荧光性质也进行了测试。固体紫外漫反射表明1和2的光学带隙分别为1.87和2.32 e V,因此它们对亚甲基蓝的光降解反应表现出了良好的催化活性。
文摘The conversion of CO_(2) to methanol with high activity and high selectivity remains challenging owing to the kinetic and thermodynamic limitations associated with the low chemical reactivity exhibited by CO_(2).Herein,we report a novel Cd/TiO_(2) catalyst exhibiting a methanol selectivity of 81%,a CO_(2) conversion of 15.8%,and a CH_(4) selectivity below 0.7%.A combination of experimental and computational studies revealed that the unique electronic properties exhibited by the Cd clusters supported by the TiO_(2) matrix were responsible for the high selectivity of CO_(2) hydrogenation to methanol via the HCOO*pathway at the interfacial catalytic sites.