In this paper, two different diameter particles (TSP, PM10) were collected by TH-16A four-channels classification air sampler. The samples were treated by HNO3. Analysis of cadmium was carried out by hydride generat...In this paper, two different diameter particles (TSP, PM10) were collected by TH-16A four-channels classification air sampler. The samples were treated by HNO3. Analysis of cadmium was carried out by hydride generation atomic fluorescence spectrometry (HG-AFS) method, and distribution proportions of elements in four phases were calculated. This method was based on the reaction of cadmium with 1.5% (m/v) KBH4 solution and 0.5% KOH(m/v) solution to form the hydride gas in medium of 2% (v/v) HCl. The detection limit for cadmium as low as 0.008μg/L was obtained. The lineally correlation coefficient was 0.99992. The relative standard deviation (n=5, C=1.00μg/L) was 3.26%. The proposed method was applied for the determination of cadmium in atmosphere aerosol samples and the recoveries in the range of 95-102.2% were obtained. This method was simple, rapid, less matrix interference and high sensitivity.展开更多
文摘In this paper, two different diameter particles (TSP, PM10) were collected by TH-16A four-channels classification air sampler. The samples were treated by HNO3. Analysis of cadmium was carried out by hydride generation atomic fluorescence spectrometry (HG-AFS) method, and distribution proportions of elements in four phases were calculated. This method was based on the reaction of cadmium with 1.5% (m/v) KBH4 solution and 0.5% KOH(m/v) solution to form the hydride gas in medium of 2% (v/v) HCl. The detection limit for cadmium as low as 0.008μg/L was obtained. The lineally correlation coefficient was 0.99992. The relative standard deviation (n=5, C=1.00μg/L) was 3.26%. The proposed method was applied for the determination of cadmium in atmosphere aerosol samples and the recoveries in the range of 95-102.2% were obtained. This method was simple, rapid, less matrix interference and high sensitivity.