Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bat...Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bath temperature, and pH on deposition rate are discussed. The prepared carbon nanotubes covered with Ni-Co-P were characterized and analyzed by fieldemission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and a vibrating sample magnetometer. The results show that the deposition rate reached the maximum when the concentration ratio of Co^2+ to Ni^2+ is 1 and the pH is 9; the deposition rate increases with the increase of bath temperature. The measurements of the magnetic properties of the obtained carbon nanotubes covered with Ni-Co-P indicate that the magnetic properties greatly depend on the concentration ratio of Co^2+ to Ni^2+, and the magnetic saturation reaches the maximum value when the Co^2+ to Ni^2+ ratio is 1. In addition, there are two peaks in the coercivity curve at Co^2+ to Ni^2+ ratios of 1/2 and 4/1, while the two peaks in the magnetic conductivity curve are located at Co^2+ to Ni^2+ ratios of 1/4 and 4/1.展开更多
The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium a...The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.展开更多
A novel Ni-P-SiC composite coating was prepared by electroless plating in order to improve the corrosion capacity and wear resistance of AZ91D magnesium alloy.The influence of pH values on deposition rates and propert...A novel Ni-P-SiC composite coating was prepared by electroless plating in order to improve the corrosion capacity and wear resistance of AZ91D magnesium alloy.The influence of pH values on deposition rates and properties of the coatings was studied.The microstructure and phase structure of the Ni-P-SiC coatings were analyzed by scanning electron microscopy(SEM)and X-ray diffractometry(XRD).The corrosion and wear resistance performances of the coatings were also investigated through electrochemical technique and pin-on-disk tribometer,respectively.The results indicate that the composite coating is composed of Ni, P and SiC.It exhibits an amorphous structure and good adhesion to the substrate.The coatings have higher open circuit potential than that of the substrate.The composite coating obtained at pH value of 5.2 possesses optimal integrated properties,which shows similar corrosion resistance and ascendant wear resistance properties to the substrate.展开更多
Developing efficient,stable,and low-cost novel electron-cocatalysts is crucial for photocatalytic hydrogen evolution reaction.Herein,amorphous Ni-P alloy particles were successfully modified onto g-C3N4 to construct t...Developing efficient,stable,and low-cost novel electron-cocatalysts is crucial for photocatalytic hydrogen evolution reaction.Herein,amorphous Ni-P alloy particles were successfully modified onto g-C3N4 to construct the Ni-P/g-C3N4 photocatalyst through a simple and green triethanolamine(TEOA)-mediated photodeposition method.It was found that the TEOA could serve as an excellent complexing agent to coordinate with Ni2+to form[Ni(TEOA)]^2+complex,which can promote the rapid and effective deposition of amorphous Ni-P alloy on the g-C3N4 surface.Photocatalytic tests suggest that the hydrogen-evolution performance of gC3N4 can be greatly promoted through integrating amorphous Ni-P alloy.Especially,the Ni-P/g-C3N4(5 wt%)exhibits the superior H2-generation activity(118.2μmol h^-1g^-1),which is almost 35.8 times that of bare g-C3N4.Furthermore,the amorphous Ni-P alloy cocatalyst can also serve as the general hydrogen-production cocatalyst to greatly enhance the photocatalytic performance of traditional semiconductor materials such as Ti O2 and Cd S.Based on the present results,the mechanism of the amorphous Ni-P alloy as the high-efficiency electron transfer medium was proposed for the boosted H2-generation rate.The present facile route may broaden the horizons for the efficient development of highly active cocatalysts in photocatalytic field.展开更多
基金ACKNOWLEDGMENTS This work was supported by Project of Fundamental Research the National Major Nanomaterials and Nanostructures (No.2005CB623603) and the National Natural Science Foundation of China (No.10674138).
文摘Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bath temperature, and pH on deposition rate are discussed. The prepared carbon nanotubes covered with Ni-Co-P were characterized and analyzed by fieldemission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and a vibrating sample magnetometer. The results show that the deposition rate reached the maximum when the concentration ratio of Co^2+ to Ni^2+ is 1 and the pH is 9; the deposition rate increases with the increase of bath temperature. The measurements of the magnetic properties of the obtained carbon nanotubes covered with Ni-Co-P indicate that the magnetic properties greatly depend on the concentration ratio of Co^2+ to Ni^2+, and the magnetic saturation reaches the maximum value when the Co^2+ to Ni^2+ ratio is 1. In addition, there are two peaks in the coercivity curve at Co^2+ to Ni^2+ ratios of 1/2 and 4/1, while the two peaks in the magnetic conductivity curve are located at Co^2+ to Ni^2+ ratios of 1/4 and 4/1.
文摘The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.
基金Project(KJ070602)supported by Program of Applied Science Foundation of Chongqing Education Committee,ChinaProject(KF0604)supported by the Open Foundation of Key Laboratory of Low Dimensional Materials&Application Technology(Xiangtan University),Ministry of Education,China
文摘A novel Ni-P-SiC composite coating was prepared by electroless plating in order to improve the corrosion capacity and wear resistance of AZ91D magnesium alloy.The influence of pH values on deposition rates and properties of the coatings was studied.The microstructure and phase structure of the Ni-P-SiC coatings were analyzed by scanning electron microscopy(SEM)and X-ray diffractometry(XRD).The corrosion and wear resistance performances of the coatings were also investigated through electrochemical technique and pin-on-disk tribometer,respectively.The results indicate that the composite coating is composed of Ni, P and SiC.It exhibits an amorphous structure and good adhesion to the substrate.The coatings have higher open circuit potential than that of the substrate.The composite coating obtained at pH value of 5.2 possesses optimal integrated properties,which shows similar corrosion resistance and ascendant wear resistance properties to the substrate.
基金supported by the National Natural Science Foundation of China(21771142 and 51672203)the Fun-damental Research Funds for the Central Universities(WUT 2019IB002)。
文摘Developing efficient,stable,and low-cost novel electron-cocatalysts is crucial for photocatalytic hydrogen evolution reaction.Herein,amorphous Ni-P alloy particles were successfully modified onto g-C3N4 to construct the Ni-P/g-C3N4 photocatalyst through a simple and green triethanolamine(TEOA)-mediated photodeposition method.It was found that the TEOA could serve as an excellent complexing agent to coordinate with Ni2+to form[Ni(TEOA)]^2+complex,which can promote the rapid and effective deposition of amorphous Ni-P alloy on the g-C3N4 surface.Photocatalytic tests suggest that the hydrogen-evolution performance of gC3N4 can be greatly promoted through integrating amorphous Ni-P alloy.Especially,the Ni-P/g-C3N4(5 wt%)exhibits the superior H2-generation activity(118.2μmol h^-1g^-1),which is almost 35.8 times that of bare g-C3N4.Furthermore,the amorphous Ni-P alloy cocatalyst can also serve as the general hydrogen-production cocatalyst to greatly enhance the photocatalytic performance of traditional semiconductor materials such as Ti O2 and Cd S.Based on the present results,the mechanism of the amorphous Ni-P alloy as the high-efficiency electron transfer medium was proposed for the boosted H2-generation rate.The present facile route may broaden the horizons for the efficient development of highly active cocatalysts in photocatalytic field.