The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the ...The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the welded joint were investigated systematically. The results indicated that the welded seam was of austenite dendrite crystal structure and no obvious heat affected zone(HAZ) was observed. A number of precipitated δ phases with homogeneous distribution were observed in the interdendritic region of the weld fusion zone. The abnormal phenomenon observed in the weld fusion zone of GH625, i.e., higher hardness and larger grain size compared with the base metal, may be attributed to the precipitated δ phase in the weld fusion zone. The higher tensile strength in the base metal was mainly attributed to the presence of more contents of fine grains and twin boundaries, while the lower elongation in the welded joint was mainly owing to the precipitated δ phase.展开更多
Effects of Ti, Hf, Nb and W alloying elements addition on the microstructure and the mechanical behaviors of NiAl-Cr(Mo) intermetallic alloy were investigated by means of XRD, SEM, EDX and compression tests. The res...Effects of Ti, Hf, Nb and W alloying elements addition on the microstructure and the mechanical behaviors of NiAl-Cr(Mo) intermetallic alloy were investigated by means of XRD, SEM, EDX and compression tests. The results show that Ni-31Al-30Cr-4Mo-2(Ti, Hf, Nb, W) alloy consists of four phases: NiAl, ??Cr solid solution, Cr2Nb and Ni2Al(Ti, Hf). The mechanical properties are improved significantly compared with the base alloy. The compression yield strength at 1 373 K is 467 MPa and the room temperature compression ductility is 17.87% under the strain rate of 5.56??0-3 s-1, due to the existence of Cr2Nb and Ni2Al(Ti, Hf) phases for strengthening and Ti solid solution in NiAl matrix and coarse Cr(Mo, W) solid solution phase at cellular boundaries for ductility. The elevated temperature compression deformation behavior of the alloy can be properly described by power-law equation: ε=0.898 σ8.47exp[-615/(RT)].展开更多
Thermal fatigue and high temperature wear are the two principle failure mechanisms for thixoforming dies. Samples of Inconel 617 and Stellite 6 alloys were submitted to thermal cycling under conditions which approxima...Thermal fatigue and high temperature wear are the two principle failure mechanisms for thixoforming dies. Samples of Inconel 617 and Stellite 6 alloys were submitted to thermal cycling under conditions which approximate thixoforming of steels and to sliding wear tests at 750 ℃. The experimental results thus obtained were compared with those of the X32CrMoV33 hot work tool steel. The Inconel 617 and Stellite 6 samples are much more resistant to oxidation and to softening than the hot work tool steel, providing a superior resistance to thermal fatigue cracking. The wear resistance of the Inconel 617 and Stellite 6 alloys at 750 ℃ is also markedly superior. The adhesive oxides growing slowly on Inconel 617 and Stellite 6 alloys sustain the wear action without spalling and are claimed to be responsible for the superior wear resistance of these alloys at 750 ℃.展开更多
A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A...A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.展开更多
文摘The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the welded joint were investigated systematically. The results indicated that the welded seam was of austenite dendrite crystal structure and no obvious heat affected zone(HAZ) was observed. A number of precipitated δ phases with homogeneous distribution were observed in the interdendritic region of the weld fusion zone. The abnormal phenomenon observed in the weld fusion zone of GH625, i.e., higher hardness and larger grain size compared with the base metal, may be attributed to the precipitated δ phase in the weld fusion zone. The higher tensile strength in the base metal was mainly attributed to the presence of more contents of fine grains and twin boundaries, while the lower elongation in the welded joint was mainly owing to the precipitated δ phase.
基金Project supported by Aerospace Science and Technology Innovation Fund of China
文摘Effects of Ti, Hf, Nb and W alloying elements addition on the microstructure and the mechanical behaviors of NiAl-Cr(Mo) intermetallic alloy were investigated by means of XRD, SEM, EDX and compression tests. The results show that Ni-31Al-30Cr-4Mo-2(Ti, Hf, Nb, W) alloy consists of four phases: NiAl, ??Cr solid solution, Cr2Nb and Ni2Al(Ti, Hf). The mechanical properties are improved significantly compared with the base alloy. The compression yield strength at 1 373 K is 467 MPa and the room temperature compression ductility is 17.87% under the strain rate of 5.56??0-3 s-1, due to the existence of Cr2Nb and Ni2Al(Ti, Hf) phases for strengthening and Ti solid solution in NiAl matrix and coarse Cr(Mo, W) solid solution phase at cellular boundaries for ductility. The elevated temperature compression deformation behavior of the alloy can be properly described by power-law equation: ε=0.898 σ8.47exp[-615/(RT)].
文摘Thermal fatigue and high temperature wear are the two principle failure mechanisms for thixoforming dies. Samples of Inconel 617 and Stellite 6 alloys were submitted to thermal cycling under conditions which approximate thixoforming of steels and to sliding wear tests at 750 ℃. The experimental results thus obtained were compared with those of the X32CrMoV33 hot work tool steel. The Inconel 617 and Stellite 6 samples are much more resistant to oxidation and to softening than the hot work tool steel, providing a superior resistance to thermal fatigue cracking. The wear resistance of the Inconel 617 and Stellite 6 alloys at 750 ℃ is also markedly superior. The adhesive oxides growing slowly on Inconel 617 and Stellite 6 alloys sustain the wear action without spalling and are claimed to be responsible for the superior wear resistance of these alloys at 750 ℃.
基金supported by the National Natural Science Foundation of China (Grant No. 11032002 and 91016013)the program for New Century Excellent Talents in University+1 种基金National Basic Research Program of China (Grant No. 2010CB832706)the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(Grant No. ZDKT10-03a)
文摘A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.