The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg...The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.展开更多
Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were opt...Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were optimized by orthogonal tests.The PTA welding parameters including welding current,powder feed rate and welding speed have significant influence on the tungsten carbide degradation.The values for the optimum welding current,powder feed rate and welding speed were determined to be100A,25g/min and40mm/min,respectively.The produced WC/Ni-based composite coatings were crack-and degradation-free.The microstructure of deposited layers,as well as the microstructure and microhardness of the optimal coating were further analyzed.展开更多
The magnesium matrix double interpenetrating composites reinforced by nickel foam were fabricated by pressureless infiltration technology.Then the morphology of the nickel reinforcement and the microstructures of comp...The magnesium matrix double interpenetrating composites reinforced by nickel foam were fabricated by pressureless infiltration technology.Then the morphology of the nickel reinforcement and the microstructures of composites were characterized by SEM.The results show that not only is the nickel foam reinforcement reticular in three dimensions,but also the struts of foam keep the network structure,which ensures that the Ni foam/Mg composites are double interpenetrating.The interface bonding of composites between magnesium matrix and nickel foam reinforcement is good,without reaction around the interface,which is the indispensable condition that advanced composites should possess.Magnesium matrix distributes in the windows of nickel foam,the triangle center holes and microhole of nickel struts,and the composites have double interpenetrating structure,which makes the composites have unique properties.展开更多
The effect of rotational speed in the friction surfacing of nickel-aluminide reinforced Al-Zn-Mg-Cu alloy matrix composite on commercially pure aluminum was investigated. The nickel-aluminide reinforcement was fabrica...The effect of rotational speed in the friction surfacing of nickel-aluminide reinforced Al-Zn-Mg-Cu alloy matrix composite on commercially pure aluminum was investigated. The nickel-aluminide reinforcement was fabricated by in-situ methods based on adding nickel powders to Al-Zn-Mg-Cu alloy melt during the semi-solid casting process.The findings showed that an increase in the rotational speed from 600 to 1000 r/min raised the coating efficiency from 65% to 76%. Besides, there was no significant difference between coating efficiencies in the coating with and without nickel-aluminide. The outcomes showed that if the coating was applied at a rotational speed of 1000 r/min, a traverse speed of 100 mm/min, and an axial feeding rate of 125 mm/min, the hardness and shear strength of the substrate increased by up to 225% and 195%, respectively. But the wear rate of the substrate dropped by 75%. Although the hardness of the coating containing nickel-aluminide increases by up to 32% compared to the coating without nickel-aluminide, nickel-aluminide does not affect the thermal stability of the coating.展开更多
Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on...Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on microstructures and properties of Ni-W-P/CeO2-SiO2 composites was studied,and the characteristics were assessed by chemical compositions,element distribution,surface morphologies,deposition rate and microhardness.The results indicate that when SiO2 concentration in bath is controlled at 20 g/L,the composites possess the fastest deposition rate,the highest microhardness,compact microstructures,smaller crystallite sizes and uniform distribution of W,P,Ce and Si within Ni-W-P matrix metal.Increasing SiO2 concentration in bath from 10 to 20 g/L leads to the refinement in grain size and the inhomogeneity of microstructures.While when SiO2 concentration is increased to 30 g/L,the crystallite sizes increase again and some bosses with nodulation shape appear on the surface of composites.展开更多
The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and Mo...The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately.The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix,and greatly improves the bonding of the matrix.The composites with 12 wt.%Ni-coated MoS2(C12)show the optimum performance including the mechanical properties and tribological behaviors.Under oil lubrication conditions,the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s.The average dry friction coefficient,sliding against 40Cr steel disc,is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa,respectively.展开更多
In order to improve the interface bonding of SiCp/AZ61 composites prepared by powder metallurgy followed by hot extrusion, the electroless plating of Ni-P coating on SiCp was carried out. The influence of Ni coating o...In order to improve the interface bonding of SiCp/AZ61 composites prepared by powder metallurgy followed by hot extrusion, the electroless plating of Ni-P coating on SiCp was carried out. The influence of Ni coating on microstructure and mechanical properties of the composites was analyzed. The results show that SiC particles distribute more uniformly in the composites after surface Ni plating and there are fewer defects in Ni-coated composite. The Ni coating reacts with the magnesium matrix forming the Mg2Ni interfacial compound layer during the sintering process. The relative density of the composite increases from 97.9% to 98.4% compared with uncoated one and the hardness of the Ni-coated composite increases more rapidly as the volume fraction of SiCp increases. The tensile test results show that the tensile strength increases from 320 to 336 MPa when the volume friction of SiC particle is 9% and the Ni-coated composites have larger elongation, indicating that Ni coating improves the interfacial bonding strength and the performance of the composites. In addition, the fracture properties of SiCp/AZ61 composites were analyzed.展开更多
The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The result...The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.展开更多
Many difficult-to-cut materials such as Ni-base super alloy, titanium alloy, and austenite stainless steel which are used extensively in aerospace generally have high strength-to-weight ratios, high corrosion resistan...Many difficult-to-cut materials such as Ni-base super alloy, titanium alloy, and austenite stainless steel which are used extensively in aerospace generally have high strength-to-weight ratios, high corrosion resistance, high strength retention ability at elevated temperatures, and low thermal conductivity. These characteristics can result in uneven tool wear and chatter vibration. Therefore, determining the appropriate end-milling conditions is more difficult for difficult-to-cut materials than for other materials. There has been much research on the high-speed milling of difficult-to-cut materials, and effective end-milling conditions, end-mill tool shapes, and processing methods have been reported. In addition, irregular pitch and lead end-mills with different helix angles have been developed by tool maker's to reduce chatter vibration, making it easier to perform high-speed milling. However, there have been few reports of slotting information useful for determining appropriate end-milling conditions and processing methods for Ni-base super alloy. The aim of this study is to derive end-milling condition with high efficiency grooving process for Ni-base super alloy (Inconel 718) sheet. Effects of cutting parameters were examined from the view point of cutting resistance, "tool tip maximum temperature and tool flank wear width. As a result from experiments, if the grooving process condition of axial depth of cut is smaller than other conditions on the same material removable rate value, it has been found that it is possible to reduce the tool tip maximum temperature and prolong the tool life.展开更多
Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient e...Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.展开更多
基金the National Natural Science Foundation of China(Nos.52101274,51731002)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011,ZR2022ME089)+1 种基金Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240).
文摘The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.
基金Project (2016YFB0300502) supported by the National Key Research and Development Program of ChinaProjects (51601129,51775386) supported by the National Natural Science Foundation of China+2 种基金Project (16PJ1410000) supported by Shanghai Pujiang Program,ChinaProject (16ZR1438700) supported by the Natural Science Foundation of Shanghai,ChinaProject (TPL1706) supported by Traction Power State Key Laboratory of Southwest Jiaotong University,China
文摘Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were optimized by orthogonal tests.The PTA welding parameters including welding current,powder feed rate and welding speed have significant influence on the tungsten carbide degradation.The values for the optimum welding current,powder feed rate and welding speed were determined to be100A,25g/min and40mm/min,respectively.The produced WC/Ni-based composite coatings were crack-and degradation-free.The microstructure of deposited layers,as well as the microstructure and microhardness of the optimal coating were further analyzed.
基金Project(07JD06)supported by Science Research Foundation of East China Jiaotong University,ChinaProject(09497)supported by Young Science Foundation of Jiangxi Province Education Office,China+1 种基金Project(2009GQC0014)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(50765005)supported by the National Natural Science Foundation of China
文摘The magnesium matrix double interpenetrating composites reinforced by nickel foam were fabricated by pressureless infiltration technology.Then the morphology of the nickel reinforcement and the microstructures of composites were characterized by SEM.The results show that not only is the nickel foam reinforcement reticular in three dimensions,but also the struts of foam keep the network structure,which ensures that the Ni foam/Mg composites are double interpenetrating.The interface bonding of composites between magnesium matrix and nickel foam reinforcement is good,without reaction around the interface,which is the indispensable condition that advanced composites should possess.Magnesium matrix distributes in the windows of nickel foam,the triangle center holes and microhole of nickel struts,and the composites have double interpenetrating structure,which makes the composites have unique properties.
文摘The effect of rotational speed in the friction surfacing of nickel-aluminide reinforced Al-Zn-Mg-Cu alloy matrix composite on commercially pure aluminum was investigated. The nickel-aluminide reinforcement was fabricated by in-situ methods based on adding nickel powders to Al-Zn-Mg-Cu alloy melt during the semi-solid casting process.The findings showed that an increase in the rotational speed from 600 to 1000 r/min raised the coating efficiency from 65% to 76%. Besides, there was no significant difference between coating efficiencies in the coating with and without nickel-aluminide. The outcomes showed that if the coating was applied at a rotational speed of 1000 r/min, a traverse speed of 100 mm/min, and an axial feeding rate of 125 mm/min, the hardness and shear strength of the substrate increased by up to 225% and 195%, respectively. But the wear rate of the substrate dropped by 75%. Although the hardness of the coating containing nickel-aluminide increases by up to 32% compared to the coating without nickel-aluminide, nickel-aluminide does not affect the thermal stability of the coating.
基金Project(20806035) supported by the National Natural Science Foundation of ChinaProject(2009CI026) supported by Back-up Personnel Foundation of Academic and Technology Leaders of Yunnan Province,China+4 种基金Project(KKZ6200927001) supported by Opening Fund of Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences Project(2007E187M) supported by Applied Basic Research Plans of Yunnan Province,ChinaProject(08C0025) supported by Scientific Research Fund of Yunnan Provincial Education Department, China Project(KKZ3200927029) supported by Training Foundation for Talents of Kunming University of Science and Technology,ChinaProject(2008-003) supported by Analysis and Measurement Research Fund of Kunming University of Science and Technology,China
文摘Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on microstructures and properties of Ni-W-P/CeO2-SiO2 composites was studied,and the characteristics were assessed by chemical compositions,element distribution,surface morphologies,deposition rate and microhardness.The results indicate that when SiO2 concentration in bath is controlled at 20 g/L,the composites possess the fastest deposition rate,the highest microhardness,compact microstructures,smaller crystallite sizes and uniform distribution of W,P,Ce and Si within Ni-W-P matrix metal.Increasing SiO2 concentration in bath from 10 to 20 g/L leads to the refinement in grain size and the inhomogeneity of microstructures.While when SiO2 concentration is increased to 30 g/L,the crystallite sizes increase again and some bosses with nodulation shape appear on the surface of composites.
基金Projects(51371099,51501091)supported by the National Natural Science Foundation of China。
文摘The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately.The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix,and greatly improves the bonding of the matrix.The composites with 12 wt.%Ni-coated MoS2(C12)show the optimum performance including the mechanical properties and tribological behaviors.Under oil lubrication conditions,the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s.The average dry friction coefficient,sliding against 40Cr steel disc,is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa,respectively.
基金Project(CXZZ20140506150310438)support by the Science and Technology Program of Shenzhen,ChinaProject(2017GK2261)supported by the Science and Technology Program of Hunan,ChinaProject(2017zzts111)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘In order to improve the interface bonding of SiCp/AZ61 composites prepared by powder metallurgy followed by hot extrusion, the electroless plating of Ni-P coating on SiCp was carried out. The influence of Ni coating on microstructure and mechanical properties of the composites was analyzed. The results show that SiC particles distribute more uniformly in the composites after surface Ni plating and there are fewer defects in Ni-coated composite. The Ni coating reacts with the magnesium matrix forming the Mg2Ni interfacial compound layer during the sintering process. The relative density of the composite increases from 97.9% to 98.4% compared with uncoated one and the hardness of the Ni-coated composite increases more rapidly as the volume fraction of SiCp increases. The tensile test results show that the tensile strength increases from 320 to 336 MPa when the volume friction of SiC particle is 9% and the Ni-coated composites have larger elongation, indicating that Ni coating improves the interfacial bonding strength and the performance of the composites. In addition, the fracture properties of SiCp/AZ61 composites were analyzed.
基金Supported by National Natural Science Foundation of China under Grant No.10902083the Natural Science Foundation of Shannxi Province under Grant No.2009GM1007
文摘The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.
文摘Many difficult-to-cut materials such as Ni-base super alloy, titanium alloy, and austenite stainless steel which are used extensively in aerospace generally have high strength-to-weight ratios, high corrosion resistance, high strength retention ability at elevated temperatures, and low thermal conductivity. These characteristics can result in uneven tool wear and chatter vibration. Therefore, determining the appropriate end-milling conditions is more difficult for difficult-to-cut materials than for other materials. There has been much research on the high-speed milling of difficult-to-cut materials, and effective end-milling conditions, end-mill tool shapes, and processing methods have been reported. In addition, irregular pitch and lead end-mills with different helix angles have been developed by tool maker's to reduce chatter vibration, making it easier to perform high-speed milling. However, there have been few reports of slotting information useful for determining appropriate end-milling conditions and processing methods for Ni-base super alloy. The aim of this study is to derive end-milling condition with high efficiency grooving process for Ni-base super alloy (Inconel 718) sheet. Effects of cutting parameters were examined from the view point of cutting resistance, "tool tip maximum temperature and tool flank wear width. As a result from experiments, if the grooving process condition of axial depth of cut is smaller than other conditions on the same material removable rate value, it has been found that it is possible to reduce the tool tip maximum temperature and prolong the tool life.
文摘Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.