The microstructure evolution of a new directionally solidified(DS) Ni-based superalloy used for gas turbine blades after long-term aging at 950 ℃ was investigated.The results show that the γ ' phase becomes more ...The microstructure evolution of a new directionally solidified(DS) Ni-based superalloy used for gas turbine blades after long-term aging at 950 ℃ was investigated.The results show that the γ ' phase becomes more regular in dendritic arm and interdendritic area,while both the mass fraction and the size of γ ' phase increase gradually with increasing aging time.During long-term aging,the MC carbide dissolves on the edge to provide the carbon for the formation of M23C6 carbide by the precipitation of Cr at the grain boundary.The rose-shaped γ '/γ eutectic partly dissolves into γ matrix and the aging promotes it transform into raft-shape γ '.The microstructure is generally stable and no needle-like topologically close-packed phase(TCP) can be found after aging for 1 000 h.展开更多
The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning tra...The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).The crystals were grown by the floating zone (FZ) method.Both cuboidal and spherical γ' precipitates were formed after a two-step aging.The size of the cuboidal γ' phases first increased and then decreased with the extension of the second-step aging time.Re,Co and Cr strongly concentrated in the γ phase whereas Ni and Al enriched in the γ' phase.Thermodynamic calculation by JMatPro was performed to explain the experimental observations.展开更多
The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the ...The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the welded joint were investigated systematically. The results indicated that the welded seam was of austenite dendrite crystal structure and no obvious heat affected zone(HAZ) was observed. A number of precipitated δ phases with homogeneous distribution were observed in the interdendritic region of the weld fusion zone. The abnormal phenomenon observed in the weld fusion zone of GH625, i.e., higher hardness and larger grain size compared with the base metal, may be attributed to the precipitated δ phase in the weld fusion zone. The higher tensile strength in the base metal was mainly attributed to the presence of more contents of fine grains and twin boundaries, while the lower elongation in the welded joint was mainly owing to the precipitated δ phase.展开更多
The cyclic deformation behavior and microstructure evolution of the 55Ni−23Cr−13Co nickel-based superalloy were studied at 750℃ under the strain amplitudes from 0.35%to 0.6%.Coffin−Manson−Basquin and Smith−Watson−Top...The cyclic deformation behavior and microstructure evolution of the 55Ni−23Cr−13Co nickel-based superalloy were studied at 750℃ under the strain amplitudes from 0.35%to 0.6%.Coffin−Manson−Basquin and Smith−Watson−Topper relationships were employed,which satisfactorily predicted the fatigue life of the alloy under various strain amplitudes.The superalloy showed an initial cyclic hardening as a result of the interaction between the dislocations and the precipitates,and following cyclic softening behavior mainly due to the shearing of theγ′phase by dislocations and dislocations recovery under all strain amplitudes.Microstructure analyses showed that the M_(23)C_(6) carbides exhibited a continuous-chain distribution at lower strain amplitudes,while they showed a discontinuous distribution at higher strain amplitudes.As the strain amplitude increased,the size of theγ′phase decreased as the consequence of repeated shearing by dislocations.Fracture mechanisms were analyzed.Under higher strain amplitudes,cavities preferred to form around grain boundaries.展开更多
IN617B nickel-base superalloy is considered as a good candidate material in 700℃advanced ultrasupercritical coal-fired power plants.The effect of Ta addition on solidification microstructure and element segregation o...IN617B nickel-base superalloy is considered as a good candidate material in 700℃advanced ultrasupercritical coal-fired power plants.The effect of Ta addition on solidification microstructure and element segregation of IN617B alloy was investigated by OM,SEM,TEM,EDS,EPMA and thermodynamic calculation.The results showed that the solidification microstructure exhibited a dendritic segregation pattern with many primary carbides distributed in interdendritic regions,such as network M_(6)C,lath M_(23)C_(6) and granular Ti(C,N).The addition of Ta promoted the precipitation of Ta-rich MC significantly inhibiting the precipitation of M_(6)C and M_(23)C_(6),and reduced the segregation degree of Al,Mo and Ti alloying elements.The addition of Ta decreased the melting temperature of MC carbide,but did not impact the solidification path,that was,L→γmatrix→MC or Ti(C,N)→M_(6)C→M_(23)C_(6),where MC and Ti(C,N)tended to form symbiotic microstructure with M_(6)C.This study will provide theoretical basis and data support for the alloy optimization and casting structure control of IN617B nickel-based superalloy.展开更多
Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.Hi...Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated.The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures.Besides,the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s-1.With increasing the deformation temperature,the size of initial solid grains and recrystallized grains increased.At semi-solid temperatures,the grains were equiaxed,and liquid phase existed at the grain boundaries and inside the grains.Discontinuous dynamic recrystallization(DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.展开更多
After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa ar...After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.展开更多
Cu75Pt25 brazing filler was applied to brazing GH99 superalloy to Nb,and the sound joints were obtained by adjusting brazing parameters.The typical interfacial microstructure of the brazed joint was Nb/Nb7Ni6+NbNi3/Ni...Cu75Pt25 brazing filler was applied to brazing GH99 superalloy to Nb,and the sound joints were obtained by adjusting brazing parameters.The typical interfacial microstructure of the brazed joint was Nb/Nb7Ni6+NbNi3/Ni(s,s)+Cr-rich NbNi3+(NbCr2+NbNi3)/GH99.The effects of brazing temperature and holding time on the interfacial microstructure of GH99/Cu75Pt25/Nb joints were studied.The results showed that the solution and diffusion of Ni atoms from GH99 substrate into brazing seam played a critical role in the interfacial microstructure evolution.As the brazing temperature rose,the Nb−Ni reaction layer was formed instead of the initial Nb3Pt layer,and the thickness increased firstly and then remained constant.The highest shear strength of the joint reached 152 MPa when brazed at 1150℃ for 15 min.All of the joints presented a brittle fracture mode during shear test,and the fracture location changed from Nb3Pt layer to Nb−Ni compounds layer.展开更多
The influence of brazing temperature and brazing time on the microstructure and shear strength ofγ-TiAl/GH536 joints brazed with Ti-Zr-Cu-Ni-Fe-Co-Mo filler was investigated using SEM,EDS,XRD and universal testing ma...The influence of brazing temperature and brazing time on the microstructure and shear strength ofγ-TiAl/GH536 joints brazed with Ti-Zr-Cu-Ni-Fe-Co-Mo filler was investigated using SEM,EDS,XRD and universal testing machine.Results show that all the brazed joints mainly consist of four reaction layers regardless of the brazing temperature and brazing time.The thickness of the brazed seam and the average shear strength of the joint increase firstly and then decrease with brazing temperature in the range of 1090-1170℃and brazing time varying from 0 to 20 min.The maximum shear strength of 262 MPa is obtained at 1150℃for 10 min.The brittle Al3NiTi2 and TiNi3 intermetallics are the main controlling factors for the crack generation and deterioration of joint strength.The fracture surface is characterized as typical cleavage fracture and it mainly consists of massive brittle Al3NiTi2 intermetallics.展开更多
Defects such as cracks and micropores exist in nickel-based superalloy during laser powder bed fusion(LPBF),hindering their application in various fields.Hot isostatic pressing(HIP)was combined with conventional heat ...Defects such as cracks and micropores exist in nickel-based superalloy during laser powder bed fusion(LPBF),hindering their application in various fields.Hot isostatic pressing(HIP)was combined with conventional heat treatment(HT)to obtain LPBF nickel-based superalloy parts with ideal properties and fewer defects.The results show that HIP process can improve the densification,while the conventional HT can eliminate the micro-defects to improve the mechanical properties.After HIP treatment,the defect volume fraction of LPBF specimens decreases.After HT,the defect content of HIP+HT specimens increases slightly.After post-treatment,the hardness shows a decreasing trend,and the tensile strength and post-break elongation of HIP+HT specimens increase to 1326 MPa and 21.3%,respectively,at room temperature.展开更多
An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evo...An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The rnicrostructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experi- ments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.展开更多
基金Projects(2006CB605005,2010CB631203) supported by the National Basic Research Program of ChinaProject(IRT0713) supported by Changjiang Scholars and Innovative Research Team in University,China
文摘The microstructure evolution of a new directionally solidified(DS) Ni-based superalloy used for gas turbine blades after long-term aging at 950 ℃ was investigated.The results show that the γ ' phase becomes more regular in dendritic arm and interdendritic area,while both the mass fraction and the size of γ ' phase increase gradually with increasing aging time.During long-term aging,the MC carbide dissolves on the edge to provide the carbon for the formation of M23C6 carbide by the precipitation of Cr at the grain boundary.The rose-shaped γ '/γ eutectic partly dissolves into γ matrix and the aging promotes it transform into raft-shape γ '.The microstructure is generally stable and no needle-like topologically close-packed phase(TCP) can be found after aging for 1 000 h.
基金Project(08dj1400402) supported by the Major Program for the Fundamental Research of Science and Technology Committee of the Shanghai Municipality,ChinaProject(09ZZ16) supported by Innovation Program of Shanghai Municipal Education Committee,China
文摘The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).The crystals were grown by the floating zone (FZ) method.Both cuboidal and spherical γ' precipitates were formed after a two-step aging.The size of the cuboidal γ' phases first increased and then decreased with the extension of the second-step aging time.Re,Co and Cr strongly concentrated in the γ phase whereas Ni and Al enriched in the γ' phase.Thermodynamic calculation by JMatPro was performed to explain the experimental observations.
文摘The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the welded joint were investigated systematically. The results indicated that the welded seam was of austenite dendrite crystal structure and no obvious heat affected zone(HAZ) was observed. A number of precipitated δ phases with homogeneous distribution were observed in the interdendritic region of the weld fusion zone. The abnormal phenomenon observed in the weld fusion zone of GH625, i.e., higher hardness and larger grain size compared with the base metal, may be attributed to the precipitated δ phase in the weld fusion zone. The higher tensile strength in the base metal was mainly attributed to the presence of more contents of fine grains and twin boundaries, while the lower elongation in the welded joint was mainly owing to the precipitated δ phase.
基金financial supports from the National Natural Science Foundation of China (Nos. 52025052, 51975405)。
文摘The cyclic deformation behavior and microstructure evolution of the 55Ni−23Cr−13Co nickel-based superalloy were studied at 750℃ under the strain amplitudes from 0.35%to 0.6%.Coffin−Manson−Basquin and Smith−Watson−Topper relationships were employed,which satisfactorily predicted the fatigue life of the alloy under various strain amplitudes.The superalloy showed an initial cyclic hardening as a result of the interaction between the dislocations and the precipitates,and following cyclic softening behavior mainly due to the shearing of theγ′phase by dislocations and dislocations recovery under all strain amplitudes.Microstructure analyses showed that the M_(23)C_(6) carbides exhibited a continuous-chain distribution at lower strain amplitudes,while they showed a discontinuous distribution at higher strain amplitudes.As the strain amplitude increased,the size of theγ′phase decreased as the consequence of repeated shearing by dislocations.Fracture mechanisms were analyzed.Under higher strain amplitudes,cavities preferred to form around grain boundaries.
文摘IN617B nickel-base superalloy is considered as a good candidate material in 700℃advanced ultrasupercritical coal-fired power plants.The effect of Ta addition on solidification microstructure and element segregation of IN617B alloy was investigated by OM,SEM,TEM,EDS,EPMA and thermodynamic calculation.The results showed that the solidification microstructure exhibited a dendritic segregation pattern with many primary carbides distributed in interdendritic regions,such as network M_(6)C,lath M_(23)C_(6) and granular Ti(C,N).The addition of Ta promoted the precipitation of Ta-rich MC significantly inhibiting the precipitation of M_(6)C and M_(23)C_(6),and reduced the segregation degree of Al,Mo and Ti alloying elements.The addition of Ta decreased the melting temperature of MC carbide,but did not impact the solidification path,that was,L→γmatrix→MC or Ti(C,N)→M_(6)C→M_(23)C_(6),where MC and Ti(C,N)tended to form symbiotic microstructure with M_(6)C.This study will provide theoretical basis and data support for the alloy optimization and casting structure control of IN617B nickel-based superalloy.
基金Project(51575127)supported by the National Natural Science Foundation of China
文摘Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated.The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures.Besides,the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s-1.With increasing the deformation temperature,the size of initial solid grains and recrystallized grains increased.At semi-solid temperatures,the grains were equiaxed,and liquid phase existed at the grain boundaries and inside the grains.Discontinuous dynamic recrystallization(DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.
基金Project(2018BSHQYXMZZ32)supported by the Postdoctoral Science Foundation of Shaanxi Province of ChinaProject(20192109)supported by the State Key Laboratory for Mechanical Behavior of Materials,ChinaProjects(2017M623213,2018M633487)supported by the Postdoctoral Science Foundation of China
文摘After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.
基金Projects(51905125,51775138,U1737205)supported by the National Natural Science Foundation of ChinaProject(ZR2019BEE031)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(2017GGX40103,2019GHY112069)supported by the Key Research and Development Program of Shandong Province,China。
文摘Cu75Pt25 brazing filler was applied to brazing GH99 superalloy to Nb,and the sound joints were obtained by adjusting brazing parameters.The typical interfacial microstructure of the brazed joint was Nb/Nb7Ni6+NbNi3/Ni(s,s)+Cr-rich NbNi3+(NbCr2+NbNi3)/GH99.The effects of brazing temperature and holding time on the interfacial microstructure of GH99/Cu75Pt25/Nb joints were studied.The results showed that the solution and diffusion of Ni atoms from GH99 substrate into brazing seam played a critical role in the interfacial microstructure evolution.As the brazing temperature rose,the Nb−Ni reaction layer was formed instead of the initial Nb3Pt layer,and the thickness increased firstly and then remained constant.The highest shear strength of the joint reached 152 MPa when brazed at 1150℃ for 15 min.All of the joints presented a brittle fracture mode during shear test,and the fracture location changed from Nb3Pt layer to Nb−Ni compounds layer.
基金Project(51865012)supported by the National Natural Science Foundation of ChinaProject(20202BABL204040)supported by the Natural Science Foundation of Jiangxi Province,China+3 种基金Project(2016005)supported by the Open Foundation of National Engineering Research Center of Near-net-shape Forming for Metallic Materials,ChinaProject(GJJ170372)supported by the Science Foundation of Educational Department of Jiangxi Province,ChinaProject(JCKY2016603C003)supported by the GF Basic Research Project,ChinaProject(JPPT125GH038)supported by the Research Project of Special Furnishment and Part,China。
文摘The influence of brazing temperature and brazing time on the microstructure and shear strength ofγ-TiAl/GH536 joints brazed with Ti-Zr-Cu-Ni-Fe-Co-Mo filler was investigated using SEM,EDS,XRD and universal testing machine.Results show that all the brazed joints mainly consist of four reaction layers regardless of the brazing temperature and brazing time.The thickness of the brazed seam and the average shear strength of the joint increase firstly and then decrease with brazing temperature in the range of 1090-1170℃and brazing time varying from 0 to 20 min.The maximum shear strength of 262 MPa is obtained at 1150℃for 10 min.The brittle Al3NiTi2 and TiNi3 intermetallics are the main controlling factors for the crack generation and deterioration of joint strength.The fracture surface is characterized as typical cleavage fracture and it mainly consists of massive brittle Al3NiTi2 intermetallics.
基金National Key R&D Program of China(2021YFB3700401)National Science and Technology Major Project(Y2019-VII-0011-0151)Science Center for Gas Turbine Project(HT-P2022-C-Ⅳ-002-001)。
文摘Defects such as cracks and micropores exist in nickel-based superalloy during laser powder bed fusion(LPBF),hindering their application in various fields.Hot isostatic pressing(HIP)was combined with conventional heat treatment(HT)to obtain LPBF nickel-based superalloy parts with ideal properties and fewer defects.The results show that HIP process can improve the densification,while the conventional HT can eliminate the micro-defects to improve the mechanical properties.After HIP treatment,the defect volume fraction of LPBF specimens decreases.After HT,the defect content of HIP+HT specimens increases slightly.After post-treatment,the hardness shows a decreasing trend,and the tensile strength and post-break elongation of HIP+HT specimens increase to 1326 MPa and 21.3%,respectively,at room temperature.
基金financially supported by the National Basic Research Program of China (Grant Nos. 2005CB724105 and 2011CB706801)the National Natural Science Foundation of China (Grant No. 10477010)+1 种基金the National High Technology Research, Development Program of China (Grant No. 2007AA04Z141)the Important National Science & Technology Specific Projects (Grant No. 2009ZX04006-041-04)
文摘An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The rnicrostructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experi- ments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.