The bioleaching of molybdenum from its sulfide ore using a Mo-resistant thermophilic bacterium sulfolobus metallics combined with a membrane biological reactor(MBR) was studied.The experimental results showed that t...The bioleaching of molybdenum from its sulfide ore using a Mo-resistant thermophilic bacterium sulfolobus metallics combined with a membrane biological reactor(MBR) was studied.The experimental results showed that the concentration of Mo can be controlled by filter of the membrane in MBR and the toxicity of Mo to microorganism is decreased in the process of bioleaching.It was also evidenced that there were different leaching rates of Ni and Mo when the concentration of Mo was different.After leaching for 20 d in the MBR at Mo concentration of 395 mg/L,the leaching rates of Ni and Mo reached the maximum of 79.57% and 56.23% respectively under the conditions of 100 g/L of mineral density,65 ℃,pH=2 and 1.0 L/min of the aeration rate.While 75.59% Ni and 54.33% Mo were leached out in column without membrane under the same conditions.展开更多
The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amou...The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amount were chosen as the investigated parameters.To maximize the leaching efficiency of nickel,copper,cobalt and minimize the dissolution of magnesium and iron ions,the model suggested a combination of optimal parameters of particles less than 0.074 mm being 72.11%,sulfuric acid addition being 300 kg/t,pulp density being 5%and inoculation amount being 12.88%.Under the conditions,the average results of three parallel experiments were 89.43%of nickel leaching efficiency,36.78%of copper leaching efficiency,84.07%of cobalt leaching efficiency,49.19%of magnesium leaching efficiency and 0.20 g/L of iron concentration.The model indicated that the most significant factor in response of the leaching efficiency of valuable metal is the particle size,and the most significant factor in response to the leaching efficiency of harmful ions(Mg2+)is the amount of sulfuric acid addition.And according to the suggested models,no significance of the interaction effect between particle size and acid addition was shown.Under the optimized parameters suggested by models,the valuable metals could be separated from harmful ions during the bioleaching process.展开更多
In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scannin...In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.展开更多
文摘The bioleaching of molybdenum from its sulfide ore using a Mo-resistant thermophilic bacterium sulfolobus metallics combined with a membrane biological reactor(MBR) was studied.The experimental results showed that the concentration of Mo can be controlled by filter of the membrane in MBR and the toxicity of Mo to microorganism is decreased in the process of bioleaching.It was also evidenced that there were different leaching rates of Ni and Mo when the concentration of Mo was different.After leaching for 20 d in the MBR at Mo concentration of 395 mg/L,the leaching rates of Ni and Mo reached the maximum of 79.57% and 56.23% respectively under the conditions of 100 g/L of mineral density,65 ℃,pH=2 and 1.0 L/min of the aeration rate.While 75.59% Ni and 54.33% Mo were leached out in column without membrane under the same conditions.
基金Projects(51704028,51574036) supported by the National Natural Science Foundation of China。
文摘The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amount were chosen as the investigated parameters.To maximize the leaching efficiency of nickel,copper,cobalt and minimize the dissolution of magnesium and iron ions,the model suggested a combination of optimal parameters of particles less than 0.074 mm being 72.11%,sulfuric acid addition being 300 kg/t,pulp density being 5%and inoculation amount being 12.88%.Under the conditions,the average results of three parallel experiments were 89.43%of nickel leaching efficiency,36.78%of copper leaching efficiency,84.07%of cobalt leaching efficiency,49.19%of magnesium leaching efficiency and 0.20 g/L of iron concentration.The model indicated that the most significant factor in response of the leaching efficiency of valuable metal is the particle size,and the most significant factor in response to the leaching efficiency of harmful ions(Mg2+)is the amount of sulfuric acid addition.And according to the suggested models,no significance of the interaction effect between particle size and acid addition was shown.Under the optimized parameters suggested by models,the valuable metals could be separated from harmful ions during the bioleaching process.
基金Projects 2008BAB31B01 supported by the National Key Technology R&D Program in the 11th Five-Year Plan of China50834006 by the National Natural Science Foundation of China
文摘In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.